判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生
的误差非常有效.
两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。
那么,如何在matlab中实现这两个相关并用图像显示出来呢?
dt=.1;
t=[0:dt:100];
x=cos(t);
[a,b]=xcorr(x,\'unbiased\');
plot(b*dt,a)
上面代码是求自相关函数并作图,对于互相关函数,稍微修改一下就可以了,即把[a,b]=xcorr(x,\'unbiased\');改为[a,b]=xcorr
(x,y,\'unbiased\');便可。
2. 实现过程:
公式仅表示形式计算,并非实际计算所用的公式。当然也可以直接采用卷积进行计算,但是结果会与xcorr的不同。事实上,两者既然有定理保证
,那么结果一定是相同的,只是没有用对公式而已。下面是检验两者结果相同的代码:
dt=.1;
t=[0:dt:100];
x=3*sin(t);
y=cos(3*t);
subplot(3,1,1);
plot(t,x);
subplot(3,1,2);
plot(t,y);
[a,b]=xcorr(x,y);
subplot(3,1,3);
plot(b*dt,a);
yy=cos(3*fliplr(t)); % or use: yy=fliplr(y);
z=conv(x,yy);
pause;
subplot(3,1,3);
plot(b*dt,z,\'r\');
即在xcorr中不使用scaling。
3. 其他相关问题:
1) 相关程度与相关函数的取值有什么联系?
示相关的方向,绝对值表示相关的程度。因为不是等单位的度量,因而不能说相关系数0.7是0.35两倍,只能说相关系数为0.7的二列变量相关程度
比相关系数为0.35的二列变量相关程度更为密切和更高。也不能说相关系数从0.70到0.80与相关系数从0.30到0.40增加的程度一样大。
对于相关系数的大小所表示的意义目前在统计学界尚不一致,但通常按下是这样认为的:
相关系数
0.00-±0.30
±0.30-±0.50
±0.50-±0.80
±0.80-±1.00