• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

OFRIN/PuzzleCAM: Puzzle-CAM: Improved localization via matching partial and full ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

OFRIN/PuzzleCAM

开源软件地址(OpenSource Url):

https://github.com/OFRIN/PuzzleCAM

开源编程语言(OpenSource Language):

Python 100.0%

开源软件介绍(OpenSource Introduction):

PWC PWC

Puzzle-CAM

The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Citation

  • Accepted to ICIP 2021
  • Please cite our paper if the code is helpful to your research. arxiv
@inproceedings{jo2021puzzle,
  title={Puzzle-CAM: Improved localization via matching partial and full features},
  author={Jo, Sanghyun and Yu, In-Jae},
  booktitle={2021 IEEE International Conference on Image Processing (ICIP)},
  pages={639--643},
  year={2021},
  organization={IEEE}
}

Abstract

Weakly-supervised semantic segmentation (WSSS) is introduced to narrow the gap for semantic segmentation performance from pixel-level supervision to image-level supervision. Most advanced approaches are based on class activation maps (CAMs) to generate pseudo-labels to train the segmentation network. The main limitation of WSSS is that the process of generating pseudo-labels from CAMs which use an image classifier is mainly focused on the most discriminative parts of the objects. To address this issue, we propose Puzzle-CAM, a process minimizes the differences between the features from separate patches and the whole image. Our method consists of a puzzle module (PM) and two regularization terms to discover the most integrated region of in an object. Without requiring extra parameters, Puzzle-CAM can activate the overall region of an object using image-level supervision. In experiments, Puzzle-CAM outperformed previous state-of-the-art methods using the same labels for supervision on the PASCAL VOC 2012 test dataset.

Overview

Overall architecture


Prerequisite

  • Python 3.8, PyTorch 1.7.0, and more in requirements.txt
  • CUDA 10.1, cuDNN 7.6.5
  • 4 x Titan RTX GPUs

Usage

Install python dependencies

python3 -m pip install -r requirements.txt

Download PASCAL VOC 2012 devkit

Follow instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit

1. Train an image classifier for generating CAMs

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_classification_with_puzzle.py --architecture resnest101 --re_loss_option masking --re_loss L1_Loss --alpha_schedule 0.50 --alpha 4.00 --tag ResNeSt101@Puzzle@optimal --data_dir $your_dir

2. Apply Random Walk (RW) to refine the generated CAMs

2.1. Make affinity labels to train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 inference_classification.py --architecture resnest101 --tag ResNeSt101@Puzzle@optimal --domain train_aug --data_dir $your_dir
python3 make_affinity_labels.py --experiment_name ResNeSt101@Puzzle@optimal@train@scale=0.5,1.0,1.5,2.0 --domain train_aug --fg_threshold 0.40 --bg_threshold 0.10 --data_dir $your_dir

2.2. Train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 train_affinitynet.py --architecture resnest101 --tag AffinityNet@ResNeSt-101@Puzzle --label_name ResNeSt101@Puzzle@optimal@train@scale=0.5,1.0,1.5,2.0@aff_fg=0.40_bg=0.10 --data_dir $your_dir

3. Train the segmentation model using the pseudo-labels

3.1. Make segmentation labels to train segmentation model.

CUDA_VISIBLE_DEVICES=0 python3 inference_rw.py --architecture resnest101 --model_name AffinityNet@ResNeSt-101@Puzzle --cam_dir ResNeSt101@Puzzle@optimal@train@scale=0.5,1.0,1.5,2.0 --domain train_aug --data_dir $your_dir
python3 make_pseudo_labels.py --experiment_name AffinityNet@ResNeSt-101@Puzzle@train@beta=10@exp_times=8@rw --domain train_aug --threshold 0.35 --crf_iteration 1 --data_dir $your_dir

3.2. Train segmentation model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag DeepLabv3+@ResNeSt-101@Fix@GN --label_name AffinityNet@ResNeSt-101@Puzzle@train@beta=10@exp_times=8@rw@crf=1 --data_dir $your_dir

4. Evaluate the models

CUDA_VISIBLE_DEVICES=0 python3 inference_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag DeepLabv3+@ResNeSt-101@Fix@GN --scale 0.5,1.0,1.5,2.0 --iteration 10

python3 evaluate.py --experiment_name DeepLabv3+@ResNeSt-101@Fix@GN@val@scale=0.5,1.0,1.5,2.0@iteration=10 --domain val --data_dir $your_dir/SegmentationClass

5. Results

Qualitative segmentation results on the PASCAL VOC 2012 validation set. Top: original images. Middle: ground truth. Bottom: prediction of the segmentation model trained using the pseudo-labels from Puzzle-CAM. Overall architecture

Methods background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mIoU
Puzzle-CAM with ResNeSt-101 88.9 87.1 38.7 89.2 55.8 72.8 89.8 78.9 91.3 26.8 84.4 40.3 88.9 81.9 83.1 34.0 60.1 83.6 47.3 59.6 38.8 67.7
Puzzle-CAM with ResNeSt-269 91.1 87.2 37.3 86.8 61.4 71.2 92.2 86.2 91.8 28.6 85.0 64.1 91.8 82.0 82.5 70.7 69.4 87.7 45.4 67.0 37.7 72.2

6. Provide the trained weights and training logs

  • "experiments.zip" includes all of trained weights and training logs (Puzzle-CAM, AffinityNet, and DeepLabv3+). experiments.zip

  • Release the final masks by our models.

Model val test
DeepLabv3+ ResNeSt-101 val.tgz test.tgz
DeepLabv3+ ResNeSt-269 val.tgz test.tgz

For any issues, please contact Sanghyun Jo, [email protected]




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap