• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

austingg/MobileNet-v2-caffe: MobileNet-v2 experimental network description for c ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

austingg/MobileNet-v2-caffe

开源软件地址(OpenSource Url):

https://github.com/austingg/MobileNet-v2-caffe

开源编程语言(OpenSource Language):


开源软件介绍(OpenSource Introduction):

MobileNet-v2-caffe

MobileNet-v2 experimental network description for caffe.

Update 2018-08-18

  1. Add other Mobilenet-v2 variants
  2. Suggestion: cudnn v7 has supported depthwise 3x3 when group == input_channel, you may speed up your training process by using the latest cudnn v7.

Update

  1. Google has released a series of mobilenet-v2 models. So reference pretrained model from tensorflow/model repository.
  2. MobileNet-V2 has accepted by CVPR 2018. The latest ilsvrc12 top1 accuracy is 72.0%.
  3. According to google official model, mobilenet-v2 downsampled feature map early.
  4. shortcuts are placed except the first inverted residual bottleneck sequence.

Note

There are some unclear details about the network architechture.

  1. bottleneck sequence 5's input size doesn't match its prior sequence's stride.
  2. how to deal with shortcuts or residual when the input channel and ouptut chanel are not the same. (Currently, we add shortcuts for all bottlenecks in the bottleneck sequence except the first one.)
  3. The paper says there are 19 bottlenecks, while there only 17 bottlene in Table 2.

Suggestion

  1. Strongly recommend that reimplement the paper use mxnet, pytorch, tensorflow, other than caffe, since there are optimized depthwise conv layer.
  2. Don't forget set the weight decay 4e-5.
  3. inception data augmentation helps.



鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap