请选择 进入手机版 | 继续访问电脑版
  • 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    公众号

生成模型与判别模型的区别

原作者: [db:作者] 来自: [db:来源] 收藏 邀请

The Difference Between Distriminative Models And Generative Models

简单来说,判别模型对p(y|x)建模,而生成模型对p(x|y)建模,其中x是特征(features),y是标签(labels)。判别模型直接可以预测新实例的值,生成模型要借助贝叶斯公式p(y|x) = p(x|y)p(y)/p(x)来做预测。

典型的判别模型: SVM, 逻辑回归,最大熵

典型的生成模型:朴素贝叶斯,高斯混合,LDA。

Andrew NG 版的说明如下:

Algorithms that try to learn p(y|x) directly (such as logistic regression), or algorithms that try to learn mappings directly from the space of inputs X to the labels {0, 1}, (such as the perceptron algorithm) are called discrim- inative learning algorithms. Here, we’ll talk about algorithms that instead try to model p(x|y) (and p(y)). These algorithms are called generative learning algorithms. For instance, if y indicates whether an example is a dog (0) or an elephant (1), then p(x|y = 0) models the distribution of dogs’ features, and p(x|y = 1) models the distribution of elephants’ features.
Ng, A. “Lecture notes for machine learning.” (2010).


鲜花

握手

雷人

路过

鸡蛋
专题导读
上一篇:
Scala编程常见问题整理【一】发布时间:2022-05-14
下一篇:
Python编程常见问题整理【一】发布时间:2022-05-14
热门推荐
热门话题
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap