Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
270 views
in Technique[技术] by (71.8m points)

python - What is the fastest way to map group names of numpy array to indices?

I'm working with 3D pointcloud of Lidar. The points are given by numpy array that looks like this:

points = np.array([[61651921, 416326074, 39805], [61605255, 416360555, 41124], [61664810, 416313743, 39900], [61664837, 416313749, 39910], [61674456, 416316663, 39503], [61651933, 416326074, 39802], [61679969, 416318049, 39500], [61674494, 416316677, 39508], [61651908, 416326079, 39800], [61651908, 416326087, 39802], [61664845, 416313738, 39913], [61674480, 416316668, 39503], [61679996, 416318047, 39510], [61605290, 416360572, 41118], [61605270, 416360565, 41122], [61683939, 416313004, 41052], [61683936, 416313033, 41060], [61679976, 416318044, 39509], [61605279, 416360555, 41109], [61664837, 416313739, 39915], [61674487, 416316666, 39505], [61679961, 416318035, 39503], [61683943, 416313004, 41054], [61683930, 416313042, 41059]])

I'd like to keep my data grouped into cubes of size 50*50*50 so that every cube preserves some hashable index and numpy indices of my points it contains. In order to get splitting, I assign cubes = points \ 50 which outputs to:

cubes = np.array([[1233038, 8326521, 796], [1232105, 8327211, 822], [1233296, 8326274, 798], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233038, 8326521, 796], [1233599, 8326360, 790], [1233489, 8326333, 790], [1233038, 8326521, 796], [1233038, 8326521, 796], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233599, 8326360, 790], [1232105, 8327211, 822], [1232105, 8327211, 822], [1233678, 8326260, 821], [1233678, 8326260, 821], [1233599, 8326360, 790], [1232105, 8327211, 822], [1233296, 8326274, 798], [1233489, 8326333, 790], [1233599, 8326360, 790], [1233678, 8326260, 821], [1233678, 8326260, 821]])

My desired output looks like this:

{(1232105, 8327211, 822): [1, 13, 14, 18]), 
(1233038, 8326521, 796): [0, 5, 8, 9], 
(1233296, 8326274, 798): [2, 3, 10, 19], 
(1233489, 8326333, 790): [4, 7, 11, 20], 
(1233599, 8326360, 790): [6, 12, 17, 21], 
(1233678, 8326260, 821): [15, 16, 22, 23]}

My real pointcloud contains up to few hundreds of millions of 3D points. What is the fastest way to do this kind of grouping?

I've tried a majority of various solutions. Here is comparison of time compsumption assuming size of points is arround 20 millions and size of distinct cubes is arround 1 million:

Pandas [tuple(elem) -> np.array(dtype=int64)]

import pandas as pd
print(pd.DataFrame(cubes).groupby([0,1,2]).indices)
#takes 9sec

Defauldict [elem.tobytes() or tuple -> list]

#thanks @abc:
result = defaultdict(list)
for idx, elem in enumerate(cubes):
    result[elem.tobytes()].append(idx) # takes 20.5sec
    # result[elem[0], elem[1], elem[2]].append(idx) #takes 27sec
    # result[tuple(elem)].append(idx) # takes 50sec

numpy_indexed [int -> np.array]

# thanks @Eelco Hoogendoorn for his library
values = npi.group_by(cubes).split(np.arange(len(cubes)))
result = dict(enumerate(values))
# takes 9.8sec

Pandas + dimensionality reduction [int -> np.array(dtype=int64)]

# thanks @Divakar for showing numexpr library:
import numexpr as ne
def dimensionality_reduction(cubes):
    #cubes = cubes - np.min(cubes, axis=0) #in case some coords are negative 
    cubes = cubes.astype(np.int64)
    s0, s1 = cubes[:,0].max()+1, cubes[:,1].max()+1
    d = {'s0':s0,'s1':s1,'c0':cubes[:,0],'c1':cubes[:,1],'c2':cubes[:,2]}
    c1D = ne.evaluate('c0+c1*s0+c2*s0*s1',d)
    return c1D
cubes = dimensionality_reduction(cubes)
result = pd.DataFrame(cubes).groupby([0]).indices
# takes 2.5 seconds

It's possible to download cubes.npz file here and use a command

cubes = np.load('cubes.npz')['array']

to check performance time.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Constant number of indices per group

Approach #1

We can perform dimensionality-reduction to reduce cubes to a 1D array. This is based on a mapping of the given cubes data onto a n-dim grid to compute the linear-index equivalents, discussed in detail here. Then, based on the uniqueness of those linear indices, we can segregate unique groups and their corresponding indices. Hence, following those strategies, we would have one solution, like so -

N = 4 # number of indices per group
c1D = np.ravel_multi_index(cubes.T, cubes.max(0)+1)
sidx = c1D.argsort()
indices = sidx.reshape(-1,N)
unq_groups = cubes[indices[:,0]]

# If you need in a zipped dictionary format
out = dict(zip(map(tuple,unq_groups), indices))

Alternative #1 : If the integer values in cubes are too large, we might want to do the dimensionality-reduction such that the dimensions with shorter extent are choosen as the primary axes. Hence, for those cases, we can modify the reduction step to get c1D, like so -

s1,s2 = cubes[:,:2].max(0)+1
s = np.r_[s2,1,s1*s2]
c1D = cubes.dot(s)

Approach #2

Next up, we can use Cython-powered kd-tree for quick nearest-neighbor lookup to get nearest neighbouring indices and hence solve our case like so -

from scipy.spatial import cKDTree

idx = cKDTree(cubes).query(cubes, k=N)[1] # N = 4 as discussed earlier
I = idx[:,0].argsort().reshape(-1,N)[:,0]
unq_groups,indices = cubes[I],idx[I]

Generic case : Variable number of indices per group

We will extend the argsort based method with some splitting to get our desired output, like so -

c1D = np.ravel_multi_index(cubes.T, cubes.max(0)+1)

sidx = c1D.argsort()
c1Ds = c1D[sidx]
split_idx = np.flatnonzero(np.r_[True,c1Ds[:-1]!=c1Ds[1:],True])
grps = cubes[sidx[split_idx[:-1]]]

indices = [sidx[i:j] for (i,j) in zip(split_idx[:-1],split_idx[1:])]
# If needed as dict o/p
out = dict(zip(map(tuple,grps), indices))

Using 1D versions of groups of cubes as keys

We will extend earlier listed method with the groups of cubes as keys to simplify the process of dictionary creating and also make it efficient with it, like so -

def numpy1(cubes):
    c1D = np.ravel_multi_index(cubes.T, cubes.max(0)+1)        
    sidx = c1D.argsort()
    c1Ds = c1D[sidx]
    mask = np.r_[True,c1Ds[:-1]!=c1Ds[1:],True]
    split_idx = np.flatnonzero(mask)
    indices = [sidx[i:j] for (i,j) in zip(split_idx[:-1],split_idx[1:])]
    out = dict(zip(c1Ds[mask[:-1]],indices))
    return out

Next up, we will make use of numba package to iterate and get to the final hashable dictionary output. Going with it, there would be two solutions - One that gets the keys and values separately using numba and the main calling will zip and convert to dict, while the other one will create a numba-supported dict type and hence no extra work required by the main calling function.

Thus, we would have first numba solution :

from numba import  njit

@njit
def _numba1(sidx, c1D):
    out = []
    n = len(sidx)
    start = 0
    grpID = []
    for i in range(1,n):
        if c1D[sidx[i]]!=c1D[sidx[i-1]]:
            out.append(sidx[start:i])
            grpID.append(c1D[sidx[start]])
            start = i
    out.append(sidx[start:])
    grpID.append(c1D[sidx[start]])
    return grpID,out

def numba1(cubes):
    c1D = np.ravel_multi_index(cubes.T, cubes.max(0)+1)
    sidx = c1D.argsort()
    out = dict(zip(*_numba1(sidx, c1D)))
    return out

And second numba solution as :

from numba import types
from numba.typed import Dict

int_array = types.int64[:]

@njit
def _numba2(sidx, c1D):
    n = len(sidx)
    start = 0
    outt = Dict.empty(
        key_type=types.int64,
        value_type=int_array,
    )
    for i in range(1,n):
        if c1D[sidx[i]]!=c1D[sidx[i-1]]:
            outt[c1D[sidx[start]]] = sidx[start:i]
            start = i
    outt[c1D[sidx[start]]] = sidx[start:]
    return outt

def numba2(cubes):
    c1D = np.ravel_multi_index(cubes.T, cubes.max(0)+1)    
    sidx = c1D.argsort()
    out = _numba2(sidx, c1D)
    return out

Timings with cubes.npz data -

In [4]: cubes = np.load('cubes.npz')['array']

In [5]: %timeit numpy1(cubes)
   ...: %timeit numba1(cubes)
   ...: %timeit numba2(cubes)
2.38 s ± 14.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
2.13 s ± 25.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.8 s ± 5.95 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Alternative #1 : We can achieve further speedup with numexpr for large arrays to compute c1D, like so -

import numexpr as ne

s0,s1 = cubes[:,0].max()+1,cubes[:,1].max()+1
d = {'s0':s0,'s1':s1,'c0':cubes[:,0],'c1':cubes[:,1],'c2':cubes[:,2]}
c1D = ne.evaluate('c0+c1*s0+c2*s0*s1',d)

This would be applicable at all places that require c1D.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...