Since you already know the formula, it should be easy enough to create a function to do the calculation for you.
Here, I've created a basic function to get you started. The function takes four arguments:
frequencies
: A vector of frequencies ("number" in your first example)
intervals
: A 2-row matrix
with the same number of columns as the length of frequencies, with the first row being the lower class boundary, and the second row being the upper class boundary. Alternatively, "intervals
" may be a column in your data.frame
, and you may specify sep
(and possibly, trim
) to have the function automatically create the required matrix for you.
sep
: The separator character in your "intervals
" column in your data.frame
.
trim
: A regular expression of characters that need to be removed before trying to coerce to a numeric matrix. One pattern is built into the function: trim = "cut"
. This sets the regular expression pattern to remove (, ), [, and ] from the input.
Here's the function (with comments showing how I used your instructions to put it together):
GroupedMedian <- function(frequencies, intervals, sep = NULL, trim = NULL) {
# If "sep" is specified, the function will try to create the
# required "intervals" matrix. "trim" removes any unwanted
# characters before attempting to convert the ranges to numeric.
if (!is.null(sep)) {
if (is.null(trim)) pattern <- ""
else if (trim == "cut") pattern <- "\[|\]|\(|\)"
else pattern <- trim
intervals <- sapply(strsplit(gsub(pattern, "", intervals), sep), as.numeric)
}
Midpoints <- rowMeans(intervals)
cf <- cumsum(frequencies)
Midrow <- findInterval(max(cf)/2, cf) + 1
L <- intervals[1, Midrow] # lower class boundary of median class
h <- diff(intervals[, Midrow]) # size of median class
f <- frequencies[Midrow] # frequency of median class
cf2 <- cf[Midrow - 1] # cumulative frequency class before median class
n_2 <- max(cf)/2 # total observations divided by 2
unname(L + (n_2 - cf2)/f * h)
}
Here's a sample data.frame
to work with:
mydf <- structure(list(salary = c("1500-1600", "1600-1700", "1700-1800",
"1800-1900", "1900-2000", "2000-2100", "2100-2200", "2200-2300",
"2300-2400", "2400-2500"), number = c(110L, 180L, 320L, 460L,
850L, 250L, 130L, 70L, 20L, 10L)), .Names = c("salary", "number"),
class = "data.frame", row.names = c(NA, -10L))
mydf
# salary number
# 1 1500-1600 110
# 2 1600-1700 180
# 3 1700-1800 320
# 4 1800-1900 460
# 5 1900-2000 850
# 6 2000-2100 250
# 7 2100-2200 130
# 8 2200-2300 70
# 9 2300-2400 20
# 10 2400-2500 10
Now, we can simply do:
GroupedMedian(mydf$number, mydf$salary, sep = "-")
# [1] 1915.294
Here's an example of the function in action on some made up data:
set.seed(1)
x <- sample(100, 100, replace = TRUE)
y <- data.frame(table(cut(x, 10)))
y
# Var1 Freq
# 1 (1.9,11.7] 8
# 2 (11.7,21.5] 8
# 3 (21.5,31.4] 8
# 4 (31.4,41.2] 15
# 5 (41.2,51] 13
# 6 (51,60.8] 5
# 7 (60.8,70.6] 11
# 8 (70.6,80.5] 15
# 9 (80.5,90.3] 11
# 10 (90.3,100] 6
### Here's GroupedMedian's output on the grouped data.frame...
GroupedMedian(y$Freq, y$Var1, sep = ",", trim = "cut")
# [1] 49.49231
### ... and the output of median on the original vector
median(x)
# [1] 49.5
By the way, with the sample data that you provided, where I think there was a mistake in one of your ranges (all were separated by dashes except one, which was separated by a comma), since strsplit
uses a regular expression by default to split on, you can use the function like this:
x<-c(110,180,320,460,850,250,130,70,20,10)
colnames<-c("numbers")
rownames<-c("[1500-1600]","(1600-1700]","(1700-1800]","(1800-1900]",
"(1900-2000]"," (2000,2100]","(2100-2200]","(2200-2300]",
"(2300-2400]","(2400-2500]")
y<-matrix(x,nrow=length(x),dimnames=list(rownames,colnames))
GroupedMedian(y[, "numbers"], rownames(y), sep="-|,", trim="cut")
# [1] 1915.294