My question is closely related to Pandas Merge - How to avoid duplicating columns but not identical.
I want to concatenate the columns that are different in three dataframes. The dataframes have a column id, and some columns that are identical: Ex.
df1
id place name qty unit A
1 NY Tom 2 10 a
2 TK Ron 3 15 a
3 Lon Don 5 90 a
4 Hk Sam 4 49 a
df2
id place name qty unit B
1 NY Tom 2 10 b
2 TK Ron 3 15 b
3 Lon Don 5 90 b
4 Hk Sam 4 49 b
df3
id place name qty unit C D
1 NY Tom 2 10 c d
2 TK Ron 3 15 c d
3 Lon Don 5 90 c d
4 Hk Sam 4 49 c d
Result:
id place name qty unit A B C D
1 NY Tom 2 10 a b c d
2 TK Ron 3 15 a b c d
3 Lon Don 5 90 a b c d
4 Hk Sam 4 49 a b c d
The columns place, name, qty, and unit will always be part of the three dataframes, the names of columns that are different could vary (A,B,C,D in my example). The three dataframes have the same number of rows.
I have tried:
cols_to_use = df1.columns - df2.columns
dfNew = merge(df, df2[cols_to_use], left_index=True, right_index=True, how='outer')
The problem is that I get more rows than expected and columns renamed in the resulting dataframe (when using concat).
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…