Here is a proposal. My timer reports 0 ms for your example. On the harder puzzle given here, which needs 31 moves to complete, it takes 96 ms.
A HashSet
makes much more sense for the closed set than your linked list. It has O(1) time insert and membership test, where your linked list requires time proportional to the length of the list, which is constantly growing.
You are using extra data structures and code that make your program more complex and slower than needed. Think more, code less, and study others' good code to overcome this. Mine is not perfect (no code ever is), but it's a place to start.
I used as the heuristic the max of Manhattan distances from each tile's currrent position to its goal. The choice of heuristic does not affect the number of steps in the solution, but it will affect run time enormously. For example, h=0 will produce brute force breadth first search.
Note that for A* to provide an optimal solution, the heuristic can never over-estimate the actual minimum number of steps to the goal. If it does so, the solution is finds might not be the shortest possible. I'm not positive the "inversions" hueristic has this property.
package eightpuzzle;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashSet;
import java.util.PriorityQueue;
public class EightPuzzle {
// Tiles for successfully completed puzzle.
static final byte [] goalTiles = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
// A* priority queue.
final PriorityQueue <State> queue = new PriorityQueue<State>(100, new Comparator<State>() {
@Override
public int compare(State a, State b) {
return a.priority() - b.priority();
}
});
// The closed state set.
final HashSet <State> closed = new HashSet <State>();
// State of the puzzle including its priority and chain to start state.
class State {
final byte [] tiles; // Tiles left to right, top to bottom.
final int spaceIndex; // Index of space (zero) in tiles
final int g; // Number of moves from start.
final int h; // Heuristic value (difference from goal)
final State prev; // Previous state in solution chain.
// A* priority function (often called F in books).
int priority() {
return g + h;
}
// Build a start state.
State(byte [] initial) {
tiles = initial;
spaceIndex = index(tiles, 0);
g = 0;
h = heuristic(tiles);
prev = null;
}
// Build a successor to prev by sliding tile from given index.
State(State prev, int slideFromIndex) {
tiles = Arrays.copyOf(prev.tiles, prev.tiles.length);
tiles[prev.spaceIndex] = tiles[slideFromIndex];
tiles[slideFromIndex] = 0;
spaceIndex = slideFromIndex;
g = prev.g + 1;
h = heuristic(tiles);
this.prev = prev;
}
// Return true iif this is the goal state.
boolean isGoal() {
return Arrays.equals(tiles, goalTiles);
}
// Successor states due to south, north, west, and east moves.
State moveS() { return spaceIndex > 2 ? new State(this, spaceIndex - 3) : null; }
State moveN() { return spaceIndex < 6 ? new State(this, spaceIndex + 3) : null; }
State moveE() { return spaceIndex % 3 > 0 ? new State(this, spaceIndex - 1) : null; }
State moveW() { return spaceIndex % 3 < 2 ? new State(this, spaceIndex + 1) : null; }
// Print this state.
void print() {
System.out.println("p = " + priority() + " = g+h = " + g + "+" + h);
for (int i = 0; i < 9; i += 3)
System.out.println(tiles[i] + " " + tiles[i+1] + " " + tiles[i+2]);
}
// Print the solution chain with start state first.
void printAll() {
if (prev != null) prev.printAll();
System.out.println();
print();
}
@Override
public boolean equals(Object obj) {
if (obj instanceof State) {
State other = (State)obj;
return Arrays.equals(tiles, other.tiles);
}
return false;
}
@Override
public int hashCode() {
return Arrays.hashCode(tiles);
}
}
// Add a valid (non-null and not closed) successor to the A* queue.
void addSuccessor(State successor) {
if (successor != null && !closed.contains(successor))
queue.add(successor);
}
// Run the solver.
void solve(byte [] initial) {
queue.clear();
closed.clear();
// Click the stopwatch.
long start = System.currentTimeMillis();
// Add initial state to queue.
queue.add(new State(initial));
while (!queue.isEmpty()) {
// Get the lowest priority state.
State state = queue.poll();
// If it's the goal, we're done.
if (state.isGoal()) {
long elapsed = System.currentTimeMillis() - start;
state.printAll();
System.out.println("elapsed (ms) = " + elapsed);
return;
}
// Make sure we don't revisit this state.
closed.add(state);
// Add successors to the queue.
addSuccessor(state.moveS());
addSuccessor(state.moveN());
addSuccessor(state.moveW());
addSuccessor(state.moveE());
}
}
// Return the index of val in given byte array or -1 if none found.
static int index(byte [] a, int val) {
for (int i = 0; i < a.length; i++)
if (a[i] == val) return i;
return -1;
}
// Return the Manhatten distance between tiles with indices a and b.
static int manhattanDistance(int a, int b) {
return Math.abs(a / 3 - b / 3) + Math.abs(a % 3 - b % 3);
}
// For our A* heuristic, we just use max of Manhatten distances of all tiles.
static int heuristic(byte [] tiles) {
int h = 0;
for (int i = 0; i < tiles.length; i++)
if (tiles[i] != 0)
h = Math.max(h, manhattanDistance(i, tiles[i]));
return h;
}
public static void main(String[] args) {
// This is a harder puzzle than the SO example
byte [] initial = { 8, 0, 6, 5, 4, 7, 2, 3, 1 };
// This is taken from the SO example.
//byte [] initial = { 1, 4, 2, 3, 0, 5, 6, 7, 8 };
new EightPuzzle().solve(initial);
}
}