Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
291 views
in Technique[技术] by (71.8m points)

java - 8-Puzzle Solution executes infinitely

I am looking for a solution to 8-puzzle problem using the A* Algorithm. I found this project on the internet. Please see the files - proj1 and EightPuzzle. The proj1 contains the entry point for the program(the main() function) and EightPuzzle describes a particular state of the puzzle. Each state is an object of the 8-puzzle.
I feel that there is nothing wrong in the logic. But it loops forever for these two inputs that I have tried : {8,2,7,5,1,6,3,0,4} and {3,1,6,8,4,5,7,2,0}. Both of them are valid input states. What is wrong with the code?


Note

  • For better viewing copy the code in a Notepad++ or some other text editor(which has the capability to recognize java source file) because there are lot of comments in the code.
  • Since A* requires a heuristic, they have provided the option of using manhattan distance and a heuristic that calculates the number of misplaced tiles. And to ensure that the best heuristic is executed first, they have implemented a PriorityQueue. The compareTo() function is implemented in the EightPuzzle class.
  • The input to the program can be changed by changing the value of p1d in the main() function of proj1 class.
  • The reason I am telling that there exists solution for the two my above inputs is because the applet here solves them. Please ensure that you select 8-puzzle from the options in the applet.

    EDIT1
    I gave this input {0,5,7,6,8,1,2,4,3}. It took about 10 seconds and gave a result with 26 moves. But the applet gave a result with 24 moves in 0.0001 seconds with A*.

    EDIT2
    While debugging I noticed that as nodes are expanded, the new nodes, after sometime, all have a heuristic - f_n as 11 or 12. They never seem to decrease. So after sometime all the states in the PriorityQueue(openset) have a heuristic of 11 or 12. So there is not much to choose from, to which node to expand. As the least is 11 and the highest is 12. Is this normal?

    EDIT3
    This is the snippet(in proj1-astar()) where the infinite looping happening. openset is the PriorityQueue containing unexpanded nodes and closedset is the LinkedList containing expanded nodes.

while(openset.size() > 0){

                    EightPuzzle x = openset.peek();


                    if(x.mapEquals(goal))
                    {

                             Stack<EightPuzzle> toDisplay = reconstruct(x);
                             System.out.println("Printing solution... ");
                             System.out.println(start.toString());
                             print(toDisplay);
                             return;
                             
                    }          
                    closedset.add(openset.poll());
                    LinkedList <EightPuzzle> neighbor = x.getChildren();              
                    while(neighbor.size() > 0)
                    {
                            EightPuzzle y = neighbor.removeFirst();
                            if(closedset.contains(y)){
                                    continue;
                            }          
                            if(!closedset.contains(y)){
                                    openset.add(y);
                            }              
                    }
               
            }




EDIT4

I have got the cause of this infinite loop. See my answer. But it takes about 25-30 seconds to execute, which is quite a long time. A* should do much faster than this. the applet does this in 0.003 seconds. I will award the bounty for improving the performance.


For quick reference I have pasted the the two classes without the comments :

EightPuzzle


 import java.util.*;
    
    public class EightPuzzle implements Comparable <Object> {
           
           
            int[] puzzle = new int[9];
            int h_n= 0;
            int hueristic_type = 0;
            int g_n = 0;
            int f_n = 0;
            EightPuzzle parent = null;
    
           
            public EightPuzzle(int[] p, int h_type, int cost)
            {
                    this.puzzle = p;
                    this.hueristic_type = h_type;
                    this.h_n = (h_type == 1) ?  h1(p) : h2(p);
                    this.g_n = cost;
                    this.f_n = h_n + g_n;
            }
            public int getF_n()
            {
                    return f_n;
            }
            public void setParent(EightPuzzle input)
            {
                    this.parent = input;
            }
            public EightPuzzle getParent()
            {
                    return this.parent;
            }
    
            public int inversions()
            {
                    /*
                     * Definition: For any other configuration besides the goal,
                     * whenever a tile with a greater number on it precedes a
                     * tile with a smaller number, the two tiles are said to be inverted
                     */
                    int inversion = 0;
                    for(int i = 0; i < this.puzzle.length; i++ )
                    {
                            for(int j = 0; j < i; j++)
                            {
                                    if(this.puzzle[i] != 0 && this.puzzle[j] != 0)
                                    {
                                    if(this.puzzle[i] < this.puzzle[j])
                                            inversion++;
                                    }
                            }
    
                    }
                    return inversion;
                   
            }
            public int h1(int[] list)
            // h1 = the number of misplaced tiles
            {
                    int gn = 0;
                    for(int i = 0; i < list.length; i++)
                    {
                            if(list[i] != i && list[i] != 0)
                                    gn++;
                    }
                    return gn;
            }
            public LinkedList<EightPuzzle> getChildren()
            {
                    LinkedList<EightPuzzle> children = new LinkedList<EightPuzzle>();
                    int loc = 0;
            int temparray[] = new int[this.puzzle.length];
            EightPuzzle rightP, upP, downP, leftP;
                    while(this.puzzle[loc] != 0)
                    {
                            loc++;
                    }
                    if(loc % 3 == 0){
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
    
                    }else if(loc % 3 == 1){
                    //add one child swaps with right
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 1];
                            temparray[loc + 1] = 0;
                           
                            rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            rightP.setParent(this);
                            children.add(rightP);
                            //add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;
                           
                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }else if(loc % 3 == 2){
                    // add one child swaps with left
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 1];
                            temparray[loc - 1] = 0;
                           
                            leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            leftP.setParent(this);
                            children.add(leftP);
                    }              
                   
                    if(loc / 3 == 0){
                    //add one child swaps with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;
                           
                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
    
                            downP.setParent(this);
    
                            children.add(downP);
                   
                           
                    }else if(loc / 3 == 1 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;
                           
                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);
    
                            children.add(upP);
                            //add one child, swap with lower
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc + 3];
                            temparray[loc + 3] = 0;
                           
                            downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            downP.setParent(this);
    
                            children.add(downP);
                    }else if (loc / 3 == 2 ){
                            //add one child, swap with upper
                            temparray = this.puzzle.clone();
                            temparray[loc] = temparray[loc - 3];
                            temparray[loc - 3] = 0;
                           
                            upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1);
                            upP.setParent(this);
    
                            children.add(upP);
                    }
    
                    return children;
            }
            public int h2(int[] list)
            // h2 = the sum of the distances of the tiles from their goal positions
            // for each item find its g

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Here is a proposal. My timer reports 0 ms for your example. On the harder puzzle given here, which needs 31 moves to complete, it takes 96 ms.

A HashSet makes much more sense for the closed set than your linked list. It has O(1) time insert and membership test, where your linked list requires time proportional to the length of the list, which is constantly growing.

You are using extra data structures and code that make your program more complex and slower than needed. Think more, code less, and study others' good code to overcome this. Mine is not perfect (no code ever is), but it's a place to start.

I used as the heuristic the max of Manhattan distances from each tile's currrent position to its goal. The choice of heuristic does not affect the number of steps in the solution, but it will affect run time enormously. For example, h=0 will produce brute force breadth first search.

Note that for A* to provide an optimal solution, the heuristic can never over-estimate the actual minimum number of steps to the goal. If it does so, the solution is finds might not be the shortest possible. I'm not positive the "inversions" hueristic has this property.

package eightpuzzle;

import java.util.Arrays;
import java.util.Comparator;
import java.util.HashSet;
import java.util.PriorityQueue;

public class EightPuzzle {

    // Tiles for successfully completed puzzle.
    static final byte [] goalTiles = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };

    // A* priority queue.
    final PriorityQueue <State> queue = new PriorityQueue<State>(100, new Comparator<State>() {
        @Override
        public int compare(State a, State b) { 
            return a.priority() - b.priority();
        }
    });

    // The closed state set.
    final HashSet <State> closed = new HashSet <State>();

    // State of the puzzle including its priority and chain to start state.
    class State {
        final byte [] tiles;    // Tiles left to right, top to bottom.
        final int spaceIndex;   // Index of space (zero) in tiles  
        final int g;            // Number of moves from start.
        final int h;            // Heuristic value (difference from goal)
        final State prev;       // Previous state in solution chain.

        // A* priority function (often called F in books).
        int priority() {
            return g + h;
        }

        // Build a start state.
        State(byte [] initial) {
            tiles = initial;
            spaceIndex = index(tiles, 0);
            g = 0;
            h = heuristic(tiles);
            prev = null;
        }

        // Build a successor to prev by sliding tile from given index.
        State(State prev, int slideFromIndex) {
            tiles = Arrays.copyOf(prev.tiles, prev.tiles.length);
            tiles[prev.spaceIndex] = tiles[slideFromIndex];
            tiles[slideFromIndex] = 0;
            spaceIndex = slideFromIndex;
            g = prev.g + 1;
            h = heuristic(tiles);
            this.prev = prev;
        }

        // Return true iif this is the goal state.
        boolean isGoal() {
            return Arrays.equals(tiles, goalTiles);
        }

        // Successor states due to south, north, west, and east moves.
        State moveS() { return spaceIndex > 2 ? new State(this, spaceIndex - 3) : null; }       
        State moveN() { return spaceIndex < 6 ? new State(this, spaceIndex + 3) : null; }       
        State moveE() { return spaceIndex % 3 > 0 ? new State(this, spaceIndex - 1) : null; }       
        State moveW() { return spaceIndex % 3 < 2 ? new State(this, spaceIndex + 1) : null; }

        // Print this state.
        void print() {
            System.out.println("p = " + priority() + " = g+h = " + g + "+" + h);
            for (int i = 0; i < 9; i += 3)
                System.out.println(tiles[i] + " " + tiles[i+1] + " " + tiles[i+2]);
        }

        // Print the solution chain with start state first.
        void printAll() {
            if (prev != null) prev.printAll();
            System.out.println();
            print();
        }

        @Override
        public boolean equals(Object obj) {
            if (obj instanceof State) {
                State other = (State)obj;
                return Arrays.equals(tiles, other.tiles);
            }
            return false;
        }

        @Override
        public int hashCode() {
            return Arrays.hashCode(tiles);
        }
    }

    // Add a valid (non-null and not closed) successor to the A* queue.
    void addSuccessor(State successor) {
        if (successor != null && !closed.contains(successor)) 
            queue.add(successor);
    }

    // Run the solver.
    void solve(byte [] initial) {

        queue.clear();
        closed.clear();

        // Click the stopwatch.
        long start = System.currentTimeMillis();

        // Add initial state to queue.
        queue.add(new State(initial));

        while (!queue.isEmpty()) {

            // Get the lowest priority state.
            State state = queue.poll();

            // If it's the goal, we're done.
            if (state.isGoal()) {
                long elapsed = System.currentTimeMillis() - start;
                state.printAll();
                System.out.println("elapsed (ms) = " + elapsed);
                return;
            }

            // Make sure we don't revisit this state.
            closed.add(state);

            // Add successors to the queue.
            addSuccessor(state.moveS());
            addSuccessor(state.moveN());
            addSuccessor(state.moveW());
            addSuccessor(state.moveE());
        }
    }

    // Return the index of val in given byte array or -1 if none found.
    static int index(byte [] a, int val) {
        for (int i = 0; i < a.length; i++)
            if (a[i] == val) return i;
        return -1;
    }

    // Return the Manhatten distance between tiles with indices a and b.
    static int manhattanDistance(int a, int b) {
        return Math.abs(a / 3 - b / 3) + Math.abs(a % 3 - b % 3);
    }

    // For our A* heuristic, we just use max of Manhatten distances of all tiles.
    static int heuristic(byte [] tiles) {
        int h = 0;
        for (int i = 0; i < tiles.length; i++)
            if (tiles[i] != 0)
                h = Math.max(h, manhattanDistance(i, tiles[i]));
        return h;
    }

    public static void main(String[] args) {

        // This is a harder puzzle than the SO example
        byte [] initial = { 8, 0, 6, 5, 4, 7, 2, 3, 1 };

        // This is taken from the SO example.
        //byte [] initial = { 1, 4, 2, 3, 0, 5, 6, 7, 8 };

        new EightPuzzle().solve(initial);
    }
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...