Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
327 views
in Technique[技术] by (71.8m points)

python - Exporting Interactive Jupyter Notebook to html

The following code plots an interactive figure where I can toggle specific lines on/off. This works perfectly when I'm working in an Ipython Notebook

import pandas as pd
import numpy as np
from itertools import cycle
import matplotlib.pyplot as plt, mpld3
from matplotlib.widgets import CheckButtons
import matplotlib.patches
import seaborn as sns
%matplotlib nbagg
sns.set(style="whitegrid")
df = pd.DataFrame({'freq': {0: 0.01, 1: 0.02, 2: 0.029999999999999999, 3: 0.040000000000000001, 4: 0.050000000000000003, 5: 0.059999999999999998, 6: 0.070000000000000007, 7: 0.080000000000000002, 8: 0.089999999999999997, 9: 0.10000000000000001, 10: 0.01, 11: 0.02, 12: 0.029999999999999999, 13: 0.040000000000000001, 14: 0.050000000000000003, 15: 0.059999999999999998, 16: 0.070000000000000007, 17: 0.080000000000000002, 18: 0.089999999999999997, 19: 0.10000000000000001, 20: 0.01, 21: 0.02, 22: 0.029999999999999999, 23: 0.040000000000000001, 24: 0.050000000000000003, 25: 0.059999999999999998, 26: 0.070000000000000007, 27: 0.080000000000000002, 28: 0.089999999999999997, 29: 0.10000000000000001}, 'kit': {0: 'B', 1: 'B', 2: 'B', 3: 'B', 4: 'B', 5: 'B', 6: 'B', 7: 'B', 8: 'B', 9: 'B', 10: 'A', 11: 'A', 12: 'A', 13: 'A', 14: 'A', 15: 'A', 16: 'A', 17: 'A', 18: 'A', 19: 'A', 20: 'C', 21: 'C', 22: 'C', 23: 'C', 24: 'C', 25: 'C', 26: 'C', 27: 'C', 28: 'C', 29: 'C'}, 'SNS': {0: 91.198979591799997, 1: 90.263605442199989, 2: 88.818027210899999, 3: 85.671768707499993, 4: 76.23299319729999, 5: 61.0969387755, 6: 45.1530612245, 7: 36.267006802700003, 8: 33.0782312925, 9: 30.739795918400002, 10: 90.646258503400006, 11: 90.306122449, 12: 90.178571428600009, 13: 89.498299319699996, 14: 88.435374149599994, 15: 83.588435374200003, 16: 75.212585034, 17: 60.969387755100001, 18: 47.278911564600001, 19: 37.627551020399999, 20: 90.986394557800011, 21: 90.136054421799997, 22: 89.540816326499993, 23: 88.690476190499993, 24: 86.479591836799997, 25: 82.397959183699996, 26: 73.809523809499993, 27: 63.180272108800004, 28: 50.935374149700003, 29: 41.241496598699996}, 'FPR': {0: 1.0953616823100001, 1: 0.24489252678500001, 2: 0.15106142277199999, 3: 0.104478605177, 4: 0.089172822253300005, 5: 0.079856258734300009, 6: 0.065881413455800009, 7: 0.059892194050699996, 8: 0.059892194050699996, 9: 0.0578957875824, 10: 0.94097291541899997, 11: 0.208291741532, 12: 0.14773407865800001, 13: 0.107805949291, 14: 0.093165635189999998, 15: 0.082518134025399995, 16: 0.074532508152000007, 17: 0.065881413455800009, 18: 0.062554069341799995, 19: 0.061888600519100001, 20: 0.85313103081100006, 21: 0.18899314567100001, 22: 0.14107939043000001, 23: 0.110467824582, 24: 0.099820323417899995, 25: 0.085180009316599997, 26: 0.078525321088700001, 27: 0.073201570506399985, 28: 0.071870632860800004, 29: 0.0705396952153}})

tableau20 = ["#6C6C6C", "#92D050", "#FFC000"]
tableau20 = cycle(tableau20)

kits = ["A","B", "C"]
color = iter(["#6C6C6C", "#92D050", "#FFC000"])
fig = plt.figure(figsize=(12,8))
for kit in kits:
    colour = next(color)
    for i in df.groupby('kit'):
        grouped_df = pd.DataFrame(np.array(i[1]), columns = 
                      ['freq', 'SNS', 'FPR', 'kit'])
        if grouped_df.kit.tolist()[1] == kit:
            x = [float(value) for i, value in enumerate(grouped_df.FPR)]
            y = [float(value) for i, value in enumerate(grouped_df.SNS)]
            x, y = (list(x) for x in zip(*sorted(zip(x, y))))
            label = grouped_df['kit'].tolist()[1]
            p = plt.plot(x, y, "-o",label = label, color = colour)

labels = [label.get_text() for label in plt.legend().texts]
plt.legend().set_visible(False)
for i, value in enumerate(labels):
    exec('label%s="%s"'%(i, value))

for i in range(len(labels)):
    exec('l%s=fig.axes[0].lines[i]'%(i))

rax = plt.axes([0.92, 0.7, 0.2, 0.2], frameon=False)
check = CheckButtons(rax, (labels), ('True ' * len(labels)))
for i, rec in enumerate(check.rectangles):
     rec.set_facecolor(tableau20.next())

def func(label):
    for i in range(len(labels)):
        if label == eval('label%s'%(i)): eval('l%s.set_visible(not l%s.get_visible())'%(i,i))

    plt.draw()
check.on_clicked(func)

plt.show()

Problem is, I need to export the notebook as a html to share with colleagues who know nothing about python. How can I export the notebook to html and get it to maintain the interactive (toggle) functionality (which it currently loses)? Thanks!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Maybe you don't need to export jupyter notebook to html, but share the notebook link to the other people and they can visit the url using their browser.

A jupyter notebook plugin would help you do this more efficiently: jupyter/dashboards, it's maintained by official jupyter team, and it helps you share your notebook like a report, and you can control which cell to display and the location of each cell displayed. Worth a try!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

2.1m questions

2.1m answers

60 comments

57.0k users

...