Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
768 views
in Technique[技术] by (71.8m points)

r - Linear regression with constraints on the coefficients

I am trying to perform linear regression, for a model like this:

Y = aX1 + bX2 + c

So, Y ~ X1 + X2

Suppose I have the following response vector:

set.seed(1)
Y <- runif(100, -1.0, 1.0)

And the following matrix of predictors:

X1 <- runif(100, 0.4, 1.0)
X2 <- sample(rep(0:1,each=50))
X <- cbind(X1, X2)

I want to use the following constraints on the coefficients:

a + c >= 0  
c >= 0

So no constraint on b.

I know that the glmc package can be used to apply constraints, but I was not able to determine how to apply it for my constraints. I also know that contr.sum can be used so that all coefficients sum to 0, for example, but that is not what I want to do. solve.QP() seems like another possibility, where setting meq=0 can be used so that all coefficients are >=0 (again, not my goal here).

Note: The solution must be able to handle NA values in the response vector Y, for example with:

Y <- runif(100, -1.0, 1.0)
Y[c(2,5,17,56,37,56,34,78)] <- NA
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

solve.QP can be passed arbitrary linear constraints, so it can certainly be used to model your constraints a+c >= 0 and c >= 0.

First, we can add a column of 1's to X to capture the intercept term, and then we can replicate standard linear regression with solve.QP:

X2 <- cbind(X, 1)
library(quadprog)
solve.QP(t(X2) %*% X2, t(Y) %*% X2, matrix(0, 3, 0), c())$solution
# [1]  0.08614041  0.21433372 -0.13267403

With the sample data from the question, neither constraint is met using standard linear regression.

By modifying both the Amat and bvec parameters, we can add our two constraints:

solve.QP(t(X2) %*% X2, t(Y) %*% X2, cbind(c(1, 0, 1), c(0, 0, 1)), c(0, 0))$solution
# [1] 0.0000000 0.1422207 0.0000000

Subject to these constraints, the squared residuals are minimized by setting the a and c coefficients to both equal 0.

You can handle missing values in Y or X2 just as the lm function does, by removing the offending observations. You might do something like the following as a pre-processing step:

has.missing <- rowSums(is.na(cbind(Y, X2))) > 0
Y <- Y[!has.missing]
X2 <- X2[!has.missing,]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...