Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
626 views
in Technique[技术] by (71.8m points)

python - Split autoencoder on encoder and decoder keras

I am trying to create an autoencoder for:

  1. Train the model
  2. Split encoder and decoder
  3. Visualise compressed data (encoder)
  4. Use arbitrary compressed data to get the output (decoder)
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
from keras.datasets import mnist
import numpy as np

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_train = x_train[:100,:,:,]
x_test = x_test.astype('float32') / 255.
x_test = x_train
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))  # adapt this if using `channels_first` image data format
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))  # adapt this if using `channels_first` image data format
 input_img = Input(shape=(28, 28, 1))  # adapt this if using `channels_first` image data format

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

# at this point the representation is (7, 7, 32)

decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded(encoded(input_img)))
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

autoencoder.fit(x_train, x_train,
                epochs=10,
                batch_size=128,
                shuffle=True,
                validation_data=(x_test, x_test),
                #callbacks=[TensorBoard(log_dir='/tmp/tb', histogram_freq=0, write_graph=False)]
               )

How to split train it and split with the trained weights?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Make encoder:

input_img = Input(shape=(28, 28, 1))

x = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

encoder = Model(input_img, encoded)

Make decoder:

decoder_input= Input(shape_equal_to_encoder_output_shape)

decoder = Conv2D(32, (3, 3), activation='relu', padding='same')(decoder_input)
x = UpSampling2D((2, 2))(decoder)
x = Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

decoder = Model(decoder_input, decoded)

Make autoencoder:

auto_input = Input(shape=(28,28,1))
encoded = encoder(auto_input)
decoded = decoder(encoded)

auto_encoder = Model(auto_input, decoded)

Now you can use any of them any way you want to.

  1. train the autoencoder
  2. use the encoder and decoder

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...