You don't need an array to calculate standard deviation.
Simply keep track of the number of points, total sum, and total sum of squares. You can calculate the mean and standard deviation at any time, without having to keep an array.
If I understand your requirements, you'll need a Map where the color is the key and an instance of Statistics is the value.
Here's a class that does it for you.
package statistics;
/**
* Statistics
* @author Michael
* @link http://stackoverflow.com/questions/11978667/online-algorithm-for-calculating-standrd-deviation/11978689#11978689
* @since 8/15/12 7:34 PM
*/
public class Statistics {
private int n;
private double sum;
private double sumsq;
public void reset() {
this.n = 0;
this.sum = 0.0;
this.sumsq = 0.0;
}
public synchronized void addValue(double x) {
++this.n;
this.sum += x;
this.sumsq += x*x;
}
public synchronized double calculateMean() {
double mean = 0.0;
if (this.n > 0) {
mean = this.sum/this.n;
}
return mean;
}
public synchronized double calculateVariance() {
double deviation = calculateStandardDeviation();
return deviation*deviation;
}
public synchronized double calculateStandardDeviation() {
double deviation = 0.0;
if (this.n > 1) {
deviation = Math.sqrt((this.sumsq - this.sum*this.sum/this.n)/(this.n-1));
}
return deviation;
}
}
Here is its unit test:
package statistics;
import org.junit.Assert;
import org.junit.Test;
/**
* StatisticsTest
* @author Michael
* @link http://www.wolframalpha.com/input/?i=variance%281%2C+2%2C+3%2C+4%2C+5%2C+6%29&a=*C.variance-_*Variance-
* @since 8/15/12 7:42 PM
*/
public class StatisticsTest {
private static final double TOLERANCE = 1.0E-9;
@Test
public void testCalculateMean() {
double [] values = new double[] {
1.0, 2.0, 3.0, 4.0, 5.0, 6.0
};
Statistics stats = new Statistics();
for (double value : values) {
stats.addValue(value);
}
double expected = 3.5;
Assert.assertEquals(expected, stats.calculateMean(), TOLERANCE);
}
@Test
public void testCalculateVariance() {
double [] values = new double[] {
1.0, 2.0, 3.0, 4.0, 5.0, 6.0
};
Statistics stats = new Statistics();
for (double value : values) {
stats.addValue(value);
}
double expected = 3.5;
Assert.assertEquals(expected, stats.calculateVariance(), TOLERANCE);
}
@Test
public void testCalculateStandardDeviation() {
double [] values = new double[] {
1.0, 2.0, 3.0, 4.0, 5.0, 6.0
};
Statistics stats = new Statistics();
for (double value : values) {
stats.addValue(value);
}
double expected = Math.sqrt(3.5);
Assert.assertEquals(expected, stats.calculateStandardDeviation(), TOLERANCE);
}
}
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…