We are experimenting with BigQuery to analyze user data generated by our software application.
Our working table consists hundreds of millions of rows, each representing a unique user "session". Each containing a timestamp, UUID, and other fields describing the user's interaction with our product during that session. We currently generate about 2GB of data (~10M rows) per day.
Every so often we may run queries against the entire dataset (about 2 months worth right now, and growing), However typical queries will span just a single day, week, or month. We're finding out that as our table grows, our single-day query becomes more and more expensive (as we would expect given BigQuery architecture)
What isthe best way to query subsets of of our data more efficiently? One approach I can think of is to "partition" the data into separate tables by day (or week, month, etc.) then query them together in a union:
SELECT foo from
mytable_2012-09-01,
mytable_2012-09-02,
mytable_2012-09-03;
Is there a better way than this???
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…