Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
501 views
in Technique[技术] by (71.8m points)

python - Matplotlib scatter plot - Remove white padding

I'm working with matplotlib to plot a variable in latitude longitude coordinates. The problem is that this image cannot include axes or borders. I have been able to remove axis, but the white padding around my image has to be completely removed (see example images from code below here: http://imgur.com/a/W0vy9) .

I have tried several methods from Google searches, including these StackOverflow methodologies:

Remove padding from matplotlib plotting

How to remove padding/border in a matplotlib subplot (SOLVED)

Matplotlib plots: removing axis, legends and white spaces

but nothing has worked in removing the white space. If you have any advice (even if it is to ditch matplotlib and to try another plotting library instead) I would appreciate it!

Here is a basic form of the code I'm using that shows this behavior:

import numpy as np
import matplotlib
from mpl_toolkits.basemap import Basemap
from scipy import stats

lat = np.random.randint(-60.5, high=60.5, size=257087)
lon = np.random.randint(-179.95, high=180, size=257087)
maxnsz =  np.random.randint(12, 60, size=257087)

percRange = np.arange(100,40,-1)
percStr=percRange.astype(str)
val_percentile=np.percentile(maxnsz, percRange, interpolation='nearest')  

#Rank all values
all_percentiles=stats.rankdata(maxnsz)/len(maxnsz)
#Figure setup
fig = matplotlib.pyplot.figure(frameon=False, dpi=600)
#Basemap code can go here

x=lon
y=lat

cmap = matplotlib.cm.get_cmap('cool')


h=np.where(all_percentiles >= 0.999)
hl=np.where((all_percentiles < 0.999) & (all_percentiles > 0.90))
mh=np.where((all_percentiles > 0.75) & (all_percentiles < 0.90))
ml=np.where((all_percentiles >= 0.4) & (all_percentiles < 0.75))
l=np.where(all_percentiles < 0.4)

all_percentiles[h]=0
all_percentiles[hl]=0.25
all_percentiles[mh]=0.5
all_percentiles[ml]=0.75
all_percentiles[l]=1

rgba_low=cmap(1)
rgba_ml=cmap(0.75)
rgba_mh=cmap(0.51)
rgba_hl=cmap(0.25)
rgba_high=cmap(0)

matplotlib.pyplot.axis('off')

matplotlib.pyplot.scatter(x[ml],y[ml], c=rgba_ml, s=3, marker=',',edgecolor='none', alpha=0.4)
matplotlib.pyplot.scatter(x[mh],y[mh], c=rgba_mh, s=3,     marker='o', edgecolor='none', alpha=0.5)
matplotlib.pyplot.scatter(x[hl],y[hl], c=rgba_hl, s=4, marker='*',edgecolor='none', alpha=0.6)
matplotlib.pyplot.scatter(x[h],y[h], c=rgba_high, s=5, marker='^', edgecolor='none',alpha=0.75)

fig.savefig('/home/usr/code/python/testfig.jpg', bbox_inches=0, nbins=0, transparent="True", pad_inches=0.0)
fig.canvas.draw()
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

The problem is that all the solutions given at Matplotlib plots: removing axis, legends and white spaces are actually meant to work with imshow.

So, the following clearly works

import matplotlib.pyplot as plt

fig = plt.figure()
ax=fig.add_axes([0,0,1,1])
ax.set_axis_off()

im = ax.imshow([[2,3,4,1], [2,4,4,2]], origin="lower", extent=[1,4,2,8])
ax.plot([1,2,3,4], [2,3,4,8], lw=5)

ax.set_aspect('auto')
plt.show()

and produces

enter image description here

But here, you are using scatter. Adding a scatter plot

import matplotlib.pyplot as plt

fig = plt.figure()
ax=fig.add_axes([0,0,1,1])
ax.set_axis_off()


im = ax.imshow([[2,3,4,1], [2,4,4,2]], origin="lower", extent=[1,4,2,8])
ax.plot([1,2,3,4], [2,3,4,8], lw=5)

ax.scatter([2,3,4,1], [2,3,4,8], c="r", s=2500)

ax.set_aspect('auto')
plt.show()

produces

enter image description here

Scatter has the particularity that matplotlib tries to make all points visible by default, which means that the axes limits are set such that all scatter points are visible as a whole.

To overcome this, we need to specifically set the axes limits:

import matplotlib.pyplot as plt

fig = plt.figure()
ax=fig.add_axes([0,0,1,1])
ax.set_axis_off()

im = ax.imshow([[2,3,4,1], [2,4,4,2]], origin="lower", extent=[1,4,2,8])
ax.plot([1,2,3,4], [2,3,4,8], lw=5)

ax.scatter([2,3,4,1], [2,3,4,8], c="r", s=2500)

ax.set_xlim([1,4])
ax.set_ylim([2,8])

ax.set_aspect('auto')
plt.show()

such that we will get the desired behaviour.

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

2.1m questions

2.1m answers

60 comments

57.0k users

...