Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
563 views
in Technique[技术] by (71.8m points)

c - Python source code for math exponent function?

When I do math computation in Python which library are we using. E.g.

>>> 2**0.5
1.4142135623730951

How can I find the source code that was used? Is this just the math.pow() function? Unfortunately, inspect.getsource(pow) returns a kind of error.

Searching on Github narrows it down to 13 possible files. And I don't fully understand how cPython is constructed.

/*[clinic input]
math.pow
    x: double
    y: double
    /
Return x**y (x to the power of y).
[clinic start generated code]*/

static PyObject *
math_pow_impl(PyObject *module, double x, double y)
/*[clinic end generated code: output=fff93e65abccd6b0 input=c26f1f6075088bfd]*/
{
    double r;
    int odd_y;

    /* deal directly with IEEE specials, to cope with problems on various
       platforms whose semantics don't exactly match C99 */
    r = 0.; /* silence compiler warning */
    if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
        errno = 0;
        if (Py_IS_NAN(x))
            r = y == 0. ? 1. : x; /* NaN**0 = 1 */
        else if (Py_IS_NAN(y))
            r = x == 1. ? 1. : y; /* 1**NaN = 1 */
        else if (Py_IS_INFINITY(x)) {
            odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
            if (y > 0.)
                r = odd_y ? x : fabs(x);
            else if (y == 0.)
                r = 1.;
            else /* y < 0. */
                r = odd_y ? copysign(0., x) : 0.;
        }
        else if (Py_IS_INFINITY(y)) {
            if (fabs(x) == 1.0)
                r = 1.;
            else if (y > 0. && fabs(x) > 1.0)
                r = y;
            else if (y < 0. && fabs(x) < 1.0) {
                r = -y; /* result is +inf */
                if (x == 0.) /* 0**-inf: divide-by-zero */
                    errno = EDOM;
            }
            else
                r = 0.;
        }
    }
    else {
        /* let libm handle finite**finite */
        errno = 0;
        PyFPE_START_PROTECT("in math_pow", return 0);
        r = pow(x, y);
        PyFPE_END_PROTECT(r);
        /* a NaN result should arise only from (-ve)**(finite
           non-integer); in this case we want to raise ValueError. */
        if (!Py_IS_FINITE(r)) {
            if (Py_IS_NAN(r)) {
                errno = EDOM;
            }
            /*
               an infinite result here arises either from:
               (A) (+/-0.)**negative (-> divide-by-zero)
               (B) overflow of x**y with x and y finite
            */
            else if (Py_IS_INFINITY(r)) {
                if (x == 0.)
                    errno = EDOM;
                else
                    errno = ERANGE;
            }
        }
    }

    if (errno && is_error(r))
        return NULL;
    else
        return PyFloat_FromDouble(r);
}

Is this the code that's being used when I find square root of 2 in Python 2**0.5 ?


Looking around it seems that ** is the same as pow() and we can look for the __pow__() method in the source code:

The consensus seems to be that pow is coming from the libm library. Possibly like this one, e_powf.c. Also there is e_pow.c

/* e_powf.c -- float version of e_pow.c.
 * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#include <math.h>
#include <math_private.h>

static const float huge = 1.0e+30, tiny = 1.0e-30;

static const float
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
zero    =  0.0,
one =  1.0,
two =  2.0,
two24   =  16777216.0,  /* 0x4b800000 */
    /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1  =  6.0000002384e-01, /* 0x3f19999a */
L2  =  4.2857143283e-01, /* 0x3edb6db7 */
L3  =  3.3333334327e-01, /* 0x3eaaaaab */
L4  =  2.7272811532e-01, /* 0x3e8ba305 */
L5  =  2.3066075146e-01, /* 0x3e6c3255 */
L6  =  2.0697501302e-01, /* 0x3e53f142 */
P1   =  1.6666667163e-01, /* 0x3e2aaaab */
P2   = -2.7777778450e-03, /* 0xbb360b61 */
P3   =  6.6137559770e-05, /* 0x388ab355 */
P4   = -1.6533901999e-06, /* 0xb5ddea0e */
P5   =  4.1381369442e-08, /* 0x3331bb4c */
lg2  =  6.9314718246e-01, /* 0x3f317218 */
lg2_h  =  6.93145752e-01, /* 0x3f317200 */
lg2_l  =  1.42860654e-06, /* 0x35bfbe8c */
ovt =  4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
cp    =  9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
cp_h  =  9.6179199219e-01, /* 0x3f763800 =head of cp */
cp_l  =  4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
ivln2    =  1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
ivln2_h  =  1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
ivln2_l  =  7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/

float
__ieee754_powf(float x, float y)
{
    float z,ax,z_h,z_l,p_h,p_l;
    float y1,t1,t2,r,s,t,u,v,w;
    int32_t i,j,k,yisint,n;
    int32_t hx,hy,ix,iy,is;

    GET_FLOAT_WORD(hx,x);
    GET_FLOAT_WORD(hy,y);
    ix = hx&0x7fffffff;  iy = hy&0x7fffffff;

    /* y==zero: x**0 = 1 */
    if(iy==0) return one;

    /* x==+-1 */
    if(x == 1.0) return one;
    if(x == -1.0 && isinf(y)) return one;

    /* +-NaN return x+y */
    if(__builtin_expect(ix > 0x7f800000 ||
                iy > 0x7f800000, 0))
        return x+y;

    /* determine if y is an odd int when x < 0
     * yisint = 0   ... y is not an integer
     * yisint = 1   ... y is an odd int
     * yisint = 2   ... y is an even int
     */
    yisint  = 0;
    if(hx<0) {
        if(iy>=0x4b800000) yisint = 2; /* even integer y */
        else if(iy>=0x3f800000) {
        k = (iy>>23)-0x7f;     /* exponent */
        j = iy>>(23-k);
        if((j<<(23-k))==iy) yisint = 2-(j&1);
        }
    }

    /* special value of y */
    if (__builtin_expect(iy==0x7f800000, 0)) {  /* y is +-inf */
        if (ix==0x3f800000)
        return  y - y;  /* inf**+-1 is NaN */
        else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
        return (hy>=0)? y: zero;
        else            /* (|x|<1)**-,+inf = inf,0 */
        return (hy<0)?-y: zero;
    }
    if(iy==0x3f800000) {    /* y is  +-1 */
        if(hy<0) return one/x; else return x;
    }
    if(hy==0x40000000) return x*x; /* y is  2 */
    if(hy==0x3f000000) {    /* y is  0.5 */
        if(__builtin_expect(hx>=0, 1))  /* x >= +0 */
        return __ieee754_sqrtf(x);
    }

    ax   = fabsf(x);
    /* special value of x */
    if(__builtin_expect(ix==0x7f800000||ix==0||ix==0x3f800000, 0)){
        z = ax;         /*x is +-0,+-inf,+-1*/
        if(hy<0) z = one/z; /* z = (1/|x|) */
        if(hx<0) {
        if(((ix-0x3f800000)|yisint)==0) {
            z = (z-z)/(z-z); /* (-1)**non-int is NaN */
        } else if(yisint==1)
            z = -z;     /* (x<0)**odd = -(|x|**odd) */
        }
        return z;
    }

    /* (x<0)**(non-int) is NaN */
    if(__builtin_expect(((((u_int32_t)hx>>31)-1)|yisint)==0, 0))
        return (x-x)/(x-x);

    /* |y| is huge */
    if(__builtin_expect(iy>0x4d000000, 0)) { /* if |y| > 2**27 */
    /* over/underflow if x is not close to one */
        if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
        if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
    /* now |1-x| is tiny <= 2**-20, suffice to compute
       log(x) by x-x^2/2+x^3/3-x^4/4 */
        t = ax-1;       /* t has 20 trailing zeros */
        w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
        u = ivln2_h*t;  /* ivln2_h has 16 sig. bits */
        v = t*ivln2_l-w*ivln2;
        t1 = u+v;
        GET_FLOAT_WORD(is,t1);
        SET_FLOAT_WORD(t1,is&0xfffff000);
        t2 = v-(t1-u);
    } else {
        float s2,s_h,s_l,t_h,t_l;
        /* Avoid internal underflow for tiny y.  The exact value
           of y does not matter if |y| <= 2**-32.  */
        if (iy < 0x2f800000)
          SET_FLOAT_WORD (y, (hy & 0x80000000) | 0x2f800000);
        n = 0;
    /* take care subnormal number */
        if(ix<0x00800000)
        {ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
        n  += ((ix)>>23)-0x7f;
        j  = ix&0x007fffff;
    /* determine interval */
        ix = j|0x3f800000;      /* normalize ix */
        if(j<=0x1cc471) k=0;    /* |x|<sqrt(3/2) */
        else if(j<0x5db3d7) k=1;    /* |x|<sqrt(3)   */
        else {k=0;n+=1;ix -= 0x00800000;}
        SET_FLOAT_WORD(ax,ix);

    /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
        u = ax-bp[k];       /* bp[0]=1.0, bp[1]=1.5 */
        v = one/(ax+bp[k]);
        s = u*v;
        s_h = s;
        GET_FLOAT_WORD(is,s_h);
        SET_FLOAT_WORD(s_h,is&0xfffff000);
    /* t_h=ax+bp[k] High */
        SET_FLOAT_WORD (t_h,
                ((((ix>>1)|0x20000000)+0x00400000+(k<<21))
                 & 0xfffff000));
        t_l = ax - (t_h-bp[k]);
        s_l = v*((u-s_h*t_h)-s_h*t_l);
    /* compute log(ax) */
        s2 = s*s;
        r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
        r += s_l*(s_h+s);
        s2  = s_h*s_h;
        t_h = (float)3.0+s2+r;
        GET_FLOAT_WORD(is,t_h);
        SET_FLOAT_WORD(t_h,is&0xfffff000);
        t_l = r-((t_h-(float)3.0)-s2);
    /* u+v = s*(1+...) */
        u = s_h*t_h;
        v = s_l*t_h+t_l*s;
    /* 2/(3log2)*(s+...) */
        p_h = u+v;
        GET_FLOAT_WORD(is,p_h);
        SET_FLOAT_WORD(p_h,is&0xfffff000);
        p_l = v-(p_h-u);
        z_h = cp_h*p_h;     /* cp_h+cp_l = 2/(3*log2) */
        z_l = cp_l*p_h+p_l*cp+dp_l[k];
    /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
        t = (float)n;
        t1 = (((z_h+z_l)+dp_h[k])+t);
        GET_FLOAT_WORD(is,t1);
        SET_FLOAT_WORD(t1,is&0xfffff000);
        t2 = z_l-(((t1-t)-dp_h[k])-z_h);
    }

    s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
    if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
        s = -one;   /* (-ve)**(odd int) */

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    GET_FLOAT_WORD(is,y);
    SET_FLOAT_WORD(y1,is&0xfffff000);

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

As the comment /* let libm handle finite**finite */ in the source suggests, the actual function got outsourced to an external library. The name libm is a historic one and is the part of libc that does the math. Not everyone had a floating point unit, so not everyone needed a library handling floating point and because memory was expensive in that times it had been packed into a second library. (Yes, it was much more complicated than that, but basically ...)

The code you are searching for is in the source for your libc. You may not be able to look into the source of your libc but the functions in it are standardized and you can take other libraries, like dietlibc, uClibc, newlib (cygwin), glibc and several more. (no links given to avoid link-rot, but a proper search-machine will find them all).

Some of those libraries use the old SunPro code (e.g.: uClibc but also newlib) which is highly optimized, close to metal code but readable and commented, look for the file e_pow.c in uClibc or newlib.

If you use Linux you might be tempted to look into the source of your GlibC where one of the many implementations of pow()can be found at sysdeps/ieee754/dbl-64/e_pow.c.

Other libraries do it a bit differently although not much, e.g.: dietlibc uses hand-rolled i386 assembler for log() and exp().


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...