dataset = read.csv('dataset/housing.header.binary.txt')
dataset1 = dataset[6] #higest positive correlation
dataset2 = dataset[13] #lowest negative correlation
dependentVal= dataset[14] #dependent value
new_dataset = cbind(dataset1,dataset2, dependentVal) # new matrix
#split dataset
#install.packages('caTools')
library(caTools)
set.seed(123) #this is needed to garantee that every run will produce the same output
split = sample.split(new_dataset, SplitRatio = 0.75)
train_set = subset(new_dataset, split == TRUE)
test_set = subset(new_dataset, split == FALSE)
#Fitting Decision Tree to training set
install.packages('rpart')
library(rpart)
classifier = rpart(formula = Medv ~ Rm + Lstat,
data = train_set)
#predicting the test set results
y_pred = predict(classifier, newdata = test_set[3], type ='class')
I want to predict column 3 of test_set
, but I keep getting
Error in eval(predvars, data, env) : object 'Rm' not found
Even though I specify test_set[3]
not test_set[1]
which contain Rm
The column names are as follows: Rm
, Lstat
, and Medv
.
test_set[3]
and test_set[2]
give the same following error:
Error in eval(predvars, data, env) : object Rm not found
and test_set[1]
gives:
Error in eval(predvars, data, env) : object 'Lstat' not found
I have tried the following:
names(test_set) <- c('Rm', 'Lstat','Medv')
: I renamed explicitly.
is.data.frame(test_set)
: i checked if test_set is a dataframe.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…