Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
856 views
in Technique[技术] by (71.8m points)

python - Plot multiple confusion matrices with plot_confusion_matrix

I am using plot_confusion_matrix from sklearn.metrics. I want to represent those confusion matrices next to each other like subplots, how could I do this?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Let's use the good'ol iris dataset to reproduce this, and fit several classifiers to plot their respective confusion matrices with plot_confusion_matrix:

from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import plot_confusion_matrix

data = load_iris()
X = data.data
y = data.target

Set up -

X_train, X_test, y_train, y_test = train_test_split(X, y)
classifiers = [LogisticRegression(solver='lbfgs'), 
               AdaBoostClassifier(),
               GradientBoostingClassifier(), 
               SVC()]
for cls in classifiers:
    cls.fit(X_train, y_train)

So the way you could compare all matrices at simple sight, is by creating a set of subplots with plt.subplots. Then iterate both over the axes objects and the trained classifiers (plot_confusion_matrix expects the as input) and plot the individual confusion matrices:

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(15,10))

for cls, ax in zip(classifiers, axes.flatten()):
    plot_confusion_matrix(cls, 
                          X_test, 
                          y_test, 
                          ax=ax, 
                          cmap='Blues',
                         display_labels=data.target_names)
    ax.title.set_text(type(cls).__name__)
plt.tight_layout()  
plt.show()

enter image description here


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...