Optimizing a code should be closely related to its purpose, especially when you use parfor
. The code you wrote in the question can be written in a much more efficient way, and definitely, do not need to be parallelized.
However, I understand that you tried to simplify the problem, just to get the idea of how to slice your variables, so here is a fixed version the can run with parfor
. But this is surely not the way to write this code:
v = [1,3,6,8];
ggx = 5.*ones(15,14);
gax = ones(15,14);
nn = 5;
for m = v
if m > 1
temp_end = m-1;
temp = ggx(:,temp_end);
parfor ja = 1:temp_end
gax(ja,temp_end) = temp(ja);
end
end
if m < nn
temp = ggx(:,m);
parfor jo = m+1:15
gax(jo,m) = temp(jo);
end
end
end
A vectorized implementation will look like this:
v = [1,3,6,8];
ggx = 5.*ones(15,14);
gax = ones(15,14);
nn = 5;
m1 = v>1; % first condition with logical indexing
temp = v(m1)-1; % get the values from v
r = ones(1,sum(temp)); % generate a vector of indicies
r(cumsum(temp)) = -temp+1; % place the reseting locations
r = cumsum(r); % calculate the indecies
r(cumsum(temp)) = temp; % place the ending points
c = repelem(temp,temp); % create an indecies vector for the columns
inds1 = sub2ind(size(gax),r,c); % convert the indecies to linear
mnn = v<nn; % second condition with logical indexing
temp = v(mnn)+1; % get the values from v
r_max = size(gax,1); % get the height of gax
r_count = r_max-temp+1; % calculate no. of rows per value in v
r = ones(1,sum(r_count)); % generate a vector of indicies
r([1 r_count(1:end-1)+1]) = temp; % set the t indicies
r(cumsum(r_count)+1) = -(r_count-temp)+1; % place the reseting locations
r = cumsum(r(1:end-1)); % calculate the indecies
c = repelem(temp-1,r_count); % create an indecies vector for the columns
inds2 = sub2ind(size(gax),r,c); % convert the indecies to linear
gax([inds1 inds2]) = ggx([inds1 inds2]); % assgin the relevant values
This is indeed quite complicated, and not always necessary. A good thing to remember, though, is that nested for
loop are much slower than a single loop, so in some cases (depend on the size of the output), this will may be the fastest solution:
for m = v
if m > 1
gax(1:m-1,m-1) = ggx(1:m-1,m-1);
end
if m<nn
gax(m+1:15,m) = ggx(m+1:15,m);
end
end