Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
993 views
in Technique[技术] by (71.8m points)

amazon web services - Why hive_staging file is missing in AWS EMR

Problem -

I am running 1 query in AWS EMR. It is failing by throwing exception -

java.io.FileNotFoundException: File s3://xxx/yyy/internal_test_automation/2016/09/17/17156/data/feed/commerce_feed_redshift_dedup/.hive-staging_hive_2016-09-17_10-24-20_998_2833938482542362802-639 does not exist.

I mentioned all the related information for this problem below. Please check.

Query -

INSERT OVERWRITE TABLE base_performance_order_dedup_20160917
SELECT 
*
 FROM 
(
select
commerce_feed_redshift_dedup.sku AS sku,
commerce_feed_redshift_dedup.revenue AS revenue,
commerce_feed_redshift_dedup.orders AS orders,
commerce_feed_redshift_dedup.units AS units,
commerce_feed_redshift_dedup.feed_date AS feed_date
from commerce_feed_redshift_dedup
) tb

Exception -

ERROR Error while executing queries
java.sql.SQLException: Error while processing statement: FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.tez.TezTask. Vertex failed, vertexName=Map 1, vertexId=vertex_1474097800415_0311_2_00, diagnostics=[Vertex vertex_1474097800415_0311_2_00 [Map 1] killed/failed due to:ROOT_INPUT_INIT_FAILURE, Vertex Input: commerce_feed_redshift_dedup initializer failed, vertex=vertex_1474097800415_0311_2_00 [Map 1], java.io.FileNotFoundException: File s3://xxx/yyy/internal_test_automation/2016/09/17/17156/data/feed/commerce_feed_redshift_dedup/.hive-staging_hive_2016-09-17_10-24-20_998_2833938482542362802-639 does not exist.
    at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.listStatus(S3NativeFileSystem.java:987)
    at com.amazon.ws.emr.hadoop.fs.s3n.S3NativeFileSystem.listStatus(S3NativeFileSystem.java:929)
    at com.amazon.ws.emr.hadoop.fs.EmrFileSystem.listStatus(EmrFileSystem.java:339)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1530)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1537)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1556)
    at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1601)
    at org.apache.hadoop.fs.FileSystem$4.(FileSystem.java:1778)
    at org.apache.hadoop.fs.FileSystem.listLocatedStatus(FileSystem.java:1777)
    at org.apache.hadoop.fs.FileSystem.listLocatedStatus(FileSystem.java:1755)
    at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:239)
    at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:201)
    at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:281)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.addSplitsForGroup(HiveInputFormat.java:363)
    at org.apache.hadoop.hive.ql.io.HiveInputFormat.getSplits(HiveInputFormat.java:486)
    at org.apache.hadoop.hive.ql.exec.tez.HiveSplitGenerator.initialize(HiveSplitGenerator.java:200)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable$1.run(RootInputInitializerManager.java:278)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable$1.run(RootInputInitializerManager.java:269)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable.call(RootInputInitializerManager.java:269)
    at org.apache.tez.dag.app.dag.RootInputInitializerManager$InputInitializerCallable.call(RootInputInitializerManager.java:253)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
]Vertex killed, vertexName=Reducer 2, vertexId=vertex_1474097800415_0311_2_01, diagnostics=[Vertex received Kill in INITED state., Vertex vertex_1474097800415_0311_2_01 [Reducer 2] killed/failed due to:OTHER_VERTEX_FAILURE]DAG did not succeed due to VERTEX_FAILURE. failedVertices:1 killedVertices:1
    at org.apache.hive.jdbc.HiveStatement.waitForOperationToComplete(HiveStatement.java:348)
    at org.apache.hive.jdbc.HiveStatement.execute(HiveStatement.java:251)
    at com.XXX.YYY.executors.HiveQueryExecutor.executeQueriesInternal(HiveQueryExecutor.java:234)
    at com.XXX.YYY.executors.HiveQueryExecutor.executeQueriesMetricsEnabled(HiveQueryExecutor.java:184)
    at com.XXX.YYY.azkaban.jobexecutors.impl.AzkabanHiveQueryExecutor.run(AzkabanHiveQueryExecutor.java:68)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at azkaban.jobtype.JavaJobRunnerMain.runMethod(JavaJobRunnerMain.java:192)
    at azkaban.jobtype.JavaJobRunnerMain.(JavaJobRunnerMain.java:132)
    at azkaban.jobtype.JavaJobRunnerMain.main(JavaJobRunnerMain.java:76)

Hive Configuration properties, that I set before executing above query. -

set hivevar:hive.mapjoin.smalltable.filesize=2000000000
set hivevar:mapreduce.map.speculative=false
set hivevar:mapreduce.output.fileoutputformat.compress=true
set hivevar:hive.exec.compress.output=true
set hivevar:mapreduce.task.timeout=6000000
set hivevar:hive.optimize.bucketmapjoin.sortedmerge=true
set hivevar:io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec
set hivevar:hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat
set hivevar:hive.auto.convert.sortmerge.join.noconditionaltask=false
set hivevar:FEED_DATE=20160917
set hivevar:hive.optimize.bucketmapjoin=true
set hivevar:hive.exec.compress.intermediate=true
set hivevar:hive.enforce.bucketmapjoin=true
set hivevar:mapred.output.compress=true
set hivevar:mapreduce.map.output.compress=true
set hivevar:hive.auto.convert.sortmerge.join=false
set hivevar:hive.auto.convert.join=false
set hivevar:mapreduce.reduce.speculative=false
set hivevar:[email protected]
set hivevar:mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec
set hive.mapjoin.smalltable.filesize=2000000000
set mapreduce.map.speculative=false
set mapreduce.output.fileoutputformat.compress=true
set hive.exec.compress.output=true
set mapreduce.task.timeout=6000000
set hive.optimize.bucketmapjoin.sortedmerge=true
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec
set hive.input.format=org.apache.hadoop.hive.ql.io.BucketizedHiveInputFormat
set hive.auto.convert.sortmerge.join.noconditionaltask=false
set FEED_DATE=20160917
set hive.optimize.bucketmapjoin=true
set hive.exec.compress.intermediate=true
set hive.enforce.bucketmapjoin=true 
set mapred.output.compress=true 
set mapreduce.map.output.compress=true 
set hive.auto.convert.sortmerge.join=false 
set hive.auto.convert.join=false 
set mapreduce.reduce.speculative=false 
set [email protected] 
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec

/etc/hive/conf/hive-site.xml

<configuration>

<!-- Hive Configuration can either be stored in this file or in the hadoop configuration files  -->
<!-- that are implied by Hadoop setup variables.                                                -->
<!-- Aside from Hadoop setup variables - this file is provided as a convenience so that Hive    -->
<!-- users do not have to edit hadoop configuration files (that may be managed as a centralized -->
<!-- resource).                                                                                 -->

<!-- Hive Execution Parameters -->


<property>
  <name>hbase.zookeeper.quorum</name>
  <value>ip-172-30-2-16.us-west-2.compute.internal</value>
  <description>http://wiki.apache.org/hadoop/Hive/HBaseIntegration</description>
</property>

<property>
  <name>hive.execution.engine</name>
  <value>tez</value>
</property>

  <property>
    <name>fs.defaultFS</name>
    <value>hdfs://ip-172-30-2-16.us-west-2.compute.internal:8020</value>
  </property>


  <property>
    <name>hive.metastore.uris</name>
    <value>thrift://ip-172-30-2-16.us-west-2.compute.internal:9083</value>
    <description>JDBC connect string for a JDBC metastore</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://ip-172-30-2-16.us-west-2.compute.internal:3306/hive?createDatabaseIfNotExist=true</value>
    <description>username to use against metastore database</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>org.mariadb.jdbc.Driver</value>
    <description>username to use against metastore database</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
    <description>username to use against metastore database</description>
  </property>

  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>mrN949zY9P2riCeY</value>
    <description>password to use against metastore database</description>
  </property>

  <property>
    <name>datanucleus.fixedDatastore</name>
    <value>true</value>
  </property>

  <property>
    <name>mapred.reduce.tasks</name>
    <value>-1</value>
  </property>

  <property>
    <name>mapred.max.split.size</name>
    <value>256000000</value>
  </property>

  <property>
    <name>hive.metastore.connect.retries</name>
    <value>15</value>
  </property>

  <property>
    <name>hive.optimize.sort.dynamic.partition</name>
    <value>true</value>
  </property>

  <property>
    <name>hive.async.log.enabled</name>
    <value>false</value>
  </property>

</configuration>

/etc/tez/conf/tez-site.xml

<configuration>
    <property>
    <name>tez.lib.uris</name>
    <value>hdfs:///apps/tez/tez.tar.gz</value>
  </property>

  <property>
    <name>tez.use.cluster.hadoop-libs</name>
    <value>true</value>
  </property>

  <property>
    <name>tez.am.grouping.max-size</name>
    <value>134217728</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-output.should-compress</name>
    <value>true</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-input.is-compressed</name>
    <value>true</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-output.compress.codec</name>
    <value>org.apache.hadoop.io.compress.LzoCodec</value>
  </property>

  <property>
    <name>tez.runtime.intermediate-input.compre

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

I resolved the issue. Let me explain in detail.

Exceptions that is coming -

  1. LeaveExpirtedException - from HDFS side.
  2. FileNotFoundException - from Hive side (when Tez execution engine executes DAG)

Problem scenario-

  1. We just upgraded the hive version from 0.13.0 to 2.1.0. And, everything was working fine with previous version. Zero runtime exception.

Different thoughts to resolve the issue -

  1. First thought was, two threads was working on same piece because of NN intelligence. But as per below settings

    set mapreduce.map.speculative=false set mapreduce.reduce.speculative=false

that was not possible.

  1. then, I increase the count from 1000 to 100000 for below settings -

    SET hive.exec.max.dynamic.partitions=100000; SET hive.exec.max.dynamic.partitions.pernode=100000;

that also didn't work.

  1. Then the third thought was, definitely in a same process, what mapper-1 was created was deleted by another mapper/reducer. But, we didn't found any such logs in Hveserver2, Tez logs.

  2. Finally the root cause lies in a application layer code itself. In hive-exec-2.1.0 version, they introduced new configuration property

    "hive.exec.stagingdir":".hive-staging"

Description of above property -

Directory name that will be created inside table locations in order to support HDFS encryption. This is replaces ${hive.exec.scratchdir} for query results with the exception of read-only tables. In all cases ${hive.exec.scratchdir} is still used for other temporary files, such as job plans.

So if there is any concurrent jobs in Application layer code (ETL), and are doing operation(rename/delete/move) on same table, then it may lead to this problem.

And, in our case, 2 concurrent jobs are doing "INSERT OVERWRITE" on same table, that leads to delete metadata file of 1 mapper, that is causing this issue.

Resolution -

  1. Move the metadata file location to outside table(table lies in S3).
  2. Disable HDFS encryption (as mentioned in Description of stagingdir property.)
  3. Change into your Application layer code to avoid concurrency issue.

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...