Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.4k views
in Technique[技术] by (71.8m points)

google cloud platform - GCP Dataproc - configure YARN fair scheduler

I was trying to set up a dataproc cluster that would compute only one job (or specified max jobs) at a time and the rest would be in queue.

I have found this solution, How to configure monopolistic FIFO application queue in YARN? , but as I'm always creating a new cluster, I needed to automatize this. I have added this to cluster creation:

"softwareConfig": {
    "properties": {
        "yarn:yarn.resourcemanager.scheduler.class":"org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler",
        "yarn:yarn.scheduler.fair.user-as-default-queue":"false",
        "yarn:yarn.scheduler.fair.allocation.file":"$HADOOP_CONF_DIR/fair-scheduler.xml",
     }
}

with another line in init action script:

sudo echo "<allocations><queueMaxAppsDefault>1</queueMaxAppsDefault></allocations>" > /etc/hadoop/conf/fair-scheduler.xml

and the cluster tells me this when I fetch its config:

'softwareConfig': {
  'imageVersion': '1.2.27',
  'properties': {
    'capacity-scheduler:yarn.scheduler.capacity.root.default.ordering-policy': 'fair',
    'core:fs.gs.block.size': '134217728',
    'core:fs.gs.metadata.cache.enable': 'false',
    'distcp:mapreduce.map.java.opts': '-Xmx4096m',
    'distcp:mapreduce.map.memory.mb': '5120',
    'distcp:mapreduce.reduce.java.opts': '-Xmx4096m',
    'distcp:mapreduce.reduce.memory.mb': '5120',
    'hdfs:dfs.datanode.address': '0.0.0.0:9866',
    'hdfs:dfs.datanode.http.address': '0.0.0.0:9864',
    'hdfs:dfs.datanode.https.address': '0.0.0.0:9865',
    'hdfs:dfs.datanode.ipc.address': '0.0.0.0:9867',
    'hdfs:dfs.namenode.http-address': '0.0.0.0:9870',
    'hdfs:dfs.namenode.https-address': '0.0.0.0:9871',
    'hdfs:dfs.namenode.secondary.http-address': '0.0.0.0:9868',
    'hdfs:dfs.namenode.secondary.https-address': '0.0.0.0:9869',
    'mapred-env:HADOOP_JOB_HISTORYSERVER_HEAPSIZE': '3840',
    'mapred:mapreduce.job.maps': '189',
    'mapred:mapreduce.job.reduce.slowstart.completedmaps': '0.95',
    'mapred:mapreduce.job.reduces': '63',
    'mapred:mapreduce.map.cpu.vcores': '1',
    'mapred:mapreduce.map.java.opts': '-Xmx4096m',
    'mapred:mapreduce.map.memory.mb': '5120',
    'mapred:mapreduce.reduce.cpu.vcores': '1',
    'mapred:mapreduce.reduce.java.opts': '-Xmx4096m',
    'mapred:mapreduce.reduce.memory.mb': '5120',
    'mapred:mapreduce.task.io.sort.mb': '256',
    'mapred:yarn.app.mapreduce.am.command-opts': '-Xmx4096m',
    'mapred:yarn.app.mapreduce.am.resource.cpu-vcores': '1',
    'mapred:yarn.app.mapreduce.am.resource.mb': '5120',
    'spark-env:SPARK_DAEMON_MEMORY': '3840m',
    'spark:spark.driver.maxResultSize': '1920m',
    'spark:spark.driver.memory': '3840m',
    'spark:spark.executor.cores': '8',
    'spark:spark.executor.memory': '37237m',
    'spark:spark.yarn.am.memory': '640m',
    'yarn:yarn.nodemanager.resource.memory-mb': '81920',
    'yarn:yarn.resourcemanager.scheduler.class': 'org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler',
    'yarn:yarn.scheduler.fair.allocation.file': '$HADOOP_CONF_DIR/fair-scheduler.xml',
    'yarn:yarn.scheduler.fair.user-as-default-queue': 'false',
    'yarn:yarn.scheduler.maximum-allocation-mb': '81920',
    'yarn:yarn.scheduler.minimum-allocation-mb': '1024'
  }
},

The file fair-scheduler.xml also contains the specified code (everything is in one line, but I don't think this could be the problem)

After all this, the cluster still acts like if the capacity scheduler was in charge. No idea why. Any recommendation would help. Thanks.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)
Waitting for answers

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...