There is a big difference between recursion in functional/imperative programming languages and Prolog (and it really became clear to me only in the last 2 weeks or so):
In functional/imperative programming, you recurse down a call chain, then come back up, unwinding the stack, then output the result. It's over.
In Prolog, you recurse down an AND-OR tree (really, alternating AND and OR nodes), selecting a predicate to call on an OR node (the "choicepoint"), from left to right, and calling every predicate in turn on an AND node, also from left to right. An acceptable tree has exactly one predicate returning TRUE under each OR node, and all predicates returning TRUE under each AND node. Once an acceptable tree has been constructed, by the very search procedure, we are (i.e. the "search cursor" is) on a rightmost bottommost node .
Success in constructing an acceptable tree also means a solution to the query entered at the Prolog Toplevel (the REPL) has been found: The variable values are output, but the tree is kept (unless there are no choicepoints).
And this is also important: all variables are global in the sense that if a variable X
as been passed all the way down the call chain from predicate to predicate to the rightmost bottommost node, then constrained at the last possible moment by unifying it with 2 for example, X = 2
, then the Prolog Toplevel is aware of that without further ado: nothing needs to be passed up the call chain.
If you now press ;
, search doesn't restart at the top of the tree, but at the bottom, i.e. at the current cursor position: the nearest parent OR node is asked for more solutions. This may result in much search until a new acceptable tree has been constructed, we are at a new rightmost bottommost node. The new variable values are output and you may again enter ;
.
This process cycles until no acceptable tree can be constructed any longer, upon which false
is output.
Note that having this AND-OR as an inspectable and modifiable data structure at runtime allows some magical tricks to be deployed.
There is bound to be a lot of power in debugging tools which record this tree to help the user who gets the dreaded sphynxian false
from a Prolog program that is supposed to work. There are now Time Traveling Debuggers for functional and imperative languages, after all...