I want to push up (metaphorically) the dataframe in ordner to get rid of the spaces (NA-Values)
My Data:
> dput(df1)
structure(list(ID = c("CN1-1", "CN1-1", "CN1-1", "CN1-10", "CN1-10",
"CN1-10", "CN1-11", "CN1-11", "CN1-11", "CN1-12", "CN1-12", "CN1-12",
"CN1-13", "CN1-13", "CN1-13"), v1 = c(0.37673, NA, NA, 1.019972,
NA, NA, 0.515152, NA, NA, 0.375139, NA, NA, 0.508125, NA, NA),
v2 = c(NA, 0.732, NA, NA, 0, NA, NA, 0.748, NA, NA, 0.466,
NA, NA, 0.57, NA), v2 = c(NA, NA, 0.357, NA, NA, 0.816, NA,
NA, 0.519, NA, NA, 0.206, NA, NA, 0.464)), .Names = c("ID",
"v1", "v2", "v2"), row.names = c(NA, 15L), class = "data.frame")
>
Looks like:
ID v1 v2 v2
1 CN1-1 0.376730 NA NA
2 CN1-1 NA 0.732 NA
3 CN1-1 NA NA 0.357
4 CN1-10 1.019972 NA NA
5 CN1-10 NA 0.000 NA
6 CN1-10 NA NA 0.816
7 CN1-11 0.515152 NA NA
8 CN1-11 NA 0.748 NA
9 CN1-11 NA NA 0.519
10 CN1-12 0.375139 NA NA
11 CN1-12 NA 0.466 NA
12 CN1-12 NA NA 0.206
13 CN1-13 0.508125 NA NA
14 CN1-13 NA 0.570 NA
15 CN1-13 NA NA 0.464
Please note: I'm not sure if the pattern is consistent over all rows. It could also be possible, that one or more variables are prominent 2+ times per ID Group.
Desired output:
ID v1 v2 v2
1 CN1-1 0.376730 0.732 0.357
2 CN1-10 1.019972 0.000 0.816
...
My idea was to melt then get rid of all NA values and then dcast. Any better approach?
EDIT:
duplicated could look like this.
16 CN1-x 0.508125 NA NA
17 CN1-x NA 0.570 NA
18 CN1-x NA NA 0.464
19 CN1-x NA NA 0.134
See Question&Answers more detail:
os