Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.3k views
in Technique[技术] by (71.8m points)

r - Error with pred$fit using nls in ggplot2

So Im using nls in ggplot2 to plot a power curve code is below:

mass <- c(4120,4740,5550,5610,6520,6870,7080,8500,8960,10350,10480,10550,11450,11930,12180,13690,13760,13800,14050,14700,15340,15790,15990,17300,18460,18630,18650,20050,23270,24530,25030,27540,28370,33460,33930,34450,34500)

solv_acc <- c(2760,2990,2990,3180,3900,4010,4140,4680,4750,5330,4980,5860,5930,5570,5910,6790,6690,7020,6240,6620,6600,6860,7940,7600,8250,8530,7410,9160,9140,10300,10440,10390,11020,12640,11920,12110,12650)

df <- data.frame(Mass=log(mass),Solv=log(solv_acc))

plotter <- (ggplot(df, aes(x=Mass, y=Solv)) + geom_point(shape=1) + stat_smooth(method = "nls", formula = y~i*x^z, start=list(i=1,z=0.2)))
plotter <-  plotter + labs(x = "Mass kDa" ,y = "Solvent Accessibility")
print(plotter)

Running the above code I get the following error:

Error in pred$fit : $ operator is invalid for atomic vectors

I am assuming the error occurs when it tries to use predict()?

When I perform nls without the use of ggplot2 on the same data frame I do not get an error

> nls1=nls(Solv~i*Mass^z,start=list(i=1,z=0.2),data=df)
> predict(nls1)
 [1] 7.893393 7.997985 8.115253 8.123230 8.234519 8.273135 8.295350 8.429871 8.468550 8.574147 8.583270 8.588134 8.647895 8.677831 8.692939 8.777944 8.781648 8.783757 8.796793 8.829609
[21] 8.860502 8.881445 8.890558 8.947512 8.994380 9.000995 9.001769 9.053953 9.161073 9.198919 9.213390 9.281841 9.303083 9.420894 9.430834 9.441670 9.442703

Can anyone point out why I am getting the error?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Your question is answered in this question on the ggplot2 mailing list. Briefly,

According to the documentation for predict.nls, it is unable to create standard errors for the predictions, so that has to be turned off in the stat_smooth call. .

So, we need to turn off the standard errors:

ggplot(df, aes(x=Mass, y=Solv)) +
  stat_smooth(method="nls", formula=y~i*x^z, se=FALSE, 
              start=list(i=1,z=0.2)) +
  geom_point(shape=1) 

Update 2019: for new versions of ggplot2, we need the start argument to nls to be passed like this:

ggplot(df, aes(x = Mass, y = Solv)) +
  stat_smooth(method = "nls", 
              se = FALSE,
              method.args = list( 
                formula = y ~ i*x^z, 
                start = list(i=1, z=2)
              )) +
  geom_point()

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...