Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.3k views
in Technique[技术] by (71.8m points)

python - Pandas: using multiple functions in a group by

My data has ages, and also payments per month.

I'm trying to aggregate summing the payments, but without summing the ages (averaging would work).

Is it possible to use different functions for different columns?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

You can pass a dictionary to agg with column names as keys and the functions you want as values.

import pandas as pd
import numpy as np

# Create some randomised data
N = 20
date_range = pd.date_range('01/01/2015', periods=N, freq='W')
df = pd.DataFrame({'ages':np.arange(N), 'payments':np.arange(N)*10}, index=date_range)

print(df.head())
#             ages  payments
# 2015-01-04     0         0
# 2015-01-11     1        10
# 2015-01-18     2        20
# 2015-01-25     3        30
# 2015-02-01     4        40

# Apply np.mean to the ages column and np.sum to the payments.
agg_funcs = {'ages':np.mean, 'payments':np.sum}

# Groupby each individual month and then apply the funcs in agg_funcs
grouped = df.groupby(df.index.to_period('M')).agg(agg_funcs)

print(grouped)
#          ages  payments
# 2015-01   1.5        60
# 2015-02   5.5       220
# 2015-03  10.0       500
# 2015-04  14.5       580
# 2015-05  18.0       540

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...