To select rows whose column value equals a scalar, some_value
, use ==
:
(要选择列值等于标量some_value
,请使用==
:)
df.loc[df['column_name'] == some_value]
To select rows whose column value is in an iterable, some_values
, use isin
:
(要选择行其列值是一个迭代, some_values
,使用isin
:)
df.loc[df['column_name'].isin(some_values)]
Combine multiple conditions with &
:
(将多个条件与&
组合:)
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
Note the parentheses.
(注意括号。)
Due to Python's operator precedence rules , &
binds more tightly than <=
and >=
. (由于Python的运算符优先级规则 , &
绑定比<=
和>=
更紧密。)
Thus, the parentheses in the last example are necessary. (因此,最后一个示例中的括号是必需的。)
Without the parentheses (没有括号)
df['column_name'] >= A & df['column_name'] <= B
is parsed as
(被解析为)
df['column_name'] >= (A & df['column_name']) <= B
which results in a Truth value of a Series is ambiguous error .
(这导致一个系列的真值是模棱两可的错误 。)
To select rows whose column value does not equal some_value
, use !=
:
(要选择列值不等于 some_value
,请使用!=
:)
df.loc[df['column_name'] != some_value]
isin
returns a boolean Series, so to select rows whose value is not in some_values
, negate the boolean Series using ~
:
(isin
返回一个布尔系列,因此要选择值不在 some_values
行,请使用~
取反布尔系列:)
df.loc[~df['column_name'].isin(some_values)]
For example,
(例如,)
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
print(df)
# A B C D
# 0 foo one 0 0
# 1 bar one 1 2
# 2 foo two 2 4
# 3 bar three 3 6
# 4 foo two 4 8
# 5 bar two 5 10
# 6 foo one 6 12
# 7 foo three 7 14
print(df.loc[df['A'] == 'foo'])
yields
(产量)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
If you have multiple values you want to include, put them in a list (or more generally, any iterable) and use isin
:
(如果要包含多个值,请将它们放在列表中(或更普遍地说,是任何可迭代的),然后使用isin
:)
print(df.loc[df['B'].isin(['one','three'])])
yields
(产量)
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
Note, however, that if you wish to do this many times, it is more efficient to make an index first, and then use df.loc
:
(但是请注意,如果您希望多次执行此操作,则首先创建索引,然后使用df.loc
会更有效:)
df = df.set_index(['B'])
print(df.loc['one'])
yields
(产量)
A C D
B
one foo 0 0
one bar 1 2
one foo 6 12
or, to include multiple values from the index use df.index.isin
:
(或者,要包含索引中的多个值,请使用df.index.isin
:)
df.loc[df.index.isin(['one','two'])]
yields
(产量)
A C D
B
one foo 0 0
one bar 1 2
two foo 2 4
two foo 4 8
two bar 5 10
one foo 6 12