Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
388 views
in Technique[技术] by (71.8m points)

reshape - Error while reshaping from long format into wide format in R - all data is NA and variable names are incorrect

I have a data frame in long format which I would like to restructure. However, when I do it, something goes severely wrong and I cannot seem to figure out way. Any help is greatly appreciated!

Here is the data (for 2 ID variables, I have 300 more)

# A tibble: 86 x 20
# Groups:   ID, Day [12]
      ID   Day   Obs Time1 Time1_1 Time_between Time_minutes   PA1   NA1   PA2   NA2   PA3
   <dbl> <dbl> <dbl> <dbl>   <dbl>        <dbl>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1     1     1     1 27154      NA           NA           NA     4     1     6     1     6
 2     1     1     2 30150   27154         2996           49     4     1     5     1     6
 3     1     1     3 33266   30150         3116           51     5     1     5     1     6
 4     1     1     4 39842   33266         6576          109     5     1     7     1     6
 5     1     1     5 46744   39842         6902          115     5     1     6     1     6
 6     1     1     6 50643   46744         3899           64     1     1     5     1     4
 7     1     1     7 56343   50643         5700           95     3     1     6     1     6
 8     1     1     8 61744   56343         5401           90     6     1     6     1     6
 9     1     1     9 67205   61744         5461           91     5     1     6     1     6
10     1     1    10 75360   67205         8155          135     4     1     6     1     6
11     1     1    11 78062   75360         2702           45     6     1     6     1     6
12     1     2    12 42844      NA           NA           NA     1     1     6     1     6
13     1     2    13 47400   42844         4556           75     6     1     6     1     6
14     1     2    14 53522   47400         6122          102     6     1     6     1     6
15     1     2    15 58923   53522         5401           90     5     1     6     1     6
16     1     2    16 63245   58923         4322           72     6     1     6     1     6
17     1     2    17 67562   63245         4317           71     6     1     6     1     6
18     1     2    18 72960   67562         5398           89     5     1     5     1     5
19     1     3    19 43800      NA           NA           NA     4     1     5     1     7
20     1     3    20 49083   43800         5283           88     4     1     6     1     6
21     1     3    21 54302   49083         5219           86     5     1     6     1     5
22     1     3    22 58324   54302         4022           67     6     1     6     1     6
23     1     3    23 63123   58324         4799           79     5     1     5     1     6
24     1     3    24 70981   63123         7858          130     4     1     6     1     6
25     1     3    25 75603   70981         4622           77     4     1     6     1     5
26     1     3    26 77583   75603         1980           33     5     1     5     1     5
27     1     4    27 27420      NA           NA           NA     4     1     6     1     5
28     1     4    28 29288   27420         1868           31     4     1     5     1     5
29     1     4    29 35339   29288         6051          100     5     1     4     1     5
30     1     4    30 37744   35339         2405           40     4     1     3     1     5
31     1     4    31 43021   37744         5277           87     4     1     4     1     5
32     1     4    32 51781   43021         8760          146     4     1     4     1     5
33     1     4    33 71460   51781        19679          327     4     1     6     1     6
34     1     4    34 76204   71460         4744           79     4     1     5     1     5
35     1     5    35 33136      NA           NA           NA     1     1     6     1     5
36     1     5    36 38883   33136         5747           95     4     1     4     1     5
37     1     5    37 45603   38883         6720          112     4     1     5     1     5
38     1     5    38 49445   45603         3842           64     4     1     5     1     5
39     1     5    39 55624   49445         6179          102     5     1     5     1     5
40     1     5    40 67085   55624        11461          191     4     1     5     1     6
41     1     5    41 75724   67085         8639          143     5     1     5     1     5
42     1     6    42 27597      NA           NA           NA     4     1     5     1     5
43     1     6    43 29711   27597         2114           35     4     1     5     1     5
44     1     6    44 35311   29711         5600           93     4     1     5     1     5
45     1     6    45 45720   35311        10409          173     4     1     5     1     5
46     1     6    46 47880   45720         2160           36     4     1     5     1     5
47     1     6    47 54304   47880         6424          107     4     1     5     1     5
48     1     6    48 62042   54304         7738          128     4     1     5     1     5
49     1     6    49 66725   62042         4683           78     5     1     5     1     5
50     1     6    50 75302   66725         8577          142     4     1     5     1     5
51     2     1     1 31220      NA           NA           NA     5     1     6     1     7
52     2     1     2 37021   31220         5801           96     4     1     6     1     6
53     2     1     3 38820   37021         1799           29     4     3     5     2     6
54     2     1     4 47041   38820         8221          137     5     3     6     1     6
55     2     1     5 49202   47041         2161           36     4     4     4     2     6
56     2     2     6 27111      NA           NA           NA     3     1     4     3     5
57     2     2     7 40561   27111        13450          224     2     1     5     1     6
58     2     2     8 45483   40561         4922           82     5     1     5     1     4
59     2     2     9 65582   45483        20099          334     6     1     7     1     7
60     2     2    10 71460   65582         5878           97     6     1     6     1     6
61     2     2    11 77340   71460         5880           98     5     1     6     1     7
62     2     3    12 34566      NA           NA           NA     4     1     6     1     7
63     2     3    13 41405   34566         6839          113     7     1     5     1     5
64     2     3    14 44223   41405         2818           46     6     1     6     1     6
65     2     3    15 69485   44223        25262          421     5     1     4     1     6
66     2     4    16 37921      NA           NA           NA     5     1     5     1     6
67     2     4    17 54062   37921        16141          269     5     2     4     4     4
68     2     4    18 60542   54062         6480          108     5     3     5     1     5
69     2     4    19 66360   60542         5818           96     5     1     4     1     5
70     2     4    20 69663   66360         3303           55     4     1     4     1     7
71     2     4    21 76023   69663         6360          106     5     1     5     1     7
72     2     4    22 77463   76023         1440           24     4     1     5     1     5
73     2     5    23 27050      NA           NA           NA     5     3     5     1     6
74     2     5    24 29400   27050         2350           39     4     1     5     1     5
75     2     5    25 36783   29400         7383          123     5     1     5     1     5
76     2     5    26 42062   36783         5279           87     5     1     4     1     6
77     2     5    27 46984   42062         4922           82     5     1     6     1     5
78     2     5    28 50344   46984         3360           56     4     1     5     1     6
79     2     5    29 56885   50344         6541          109     7     1     7     1     7
80     2     5    30 71101   56885        14216          236     4     1     5     1     7
81     2     6    31 27094      NA           NA           NA     1     1     4     1     5
82     2     6    32 27559   27094          465            7     1     1     4     1     5
83     2     6    33 40441   27559        12882          214     4     1     5     1     6
84     2     6    34 44763   40441         4322           72     5     1     5     1     6
85     2     6    35 50522   44763         5759           95     5     1     5     1     5
86     2     6    36 60962   50522        10440          174     4     1     5     1     6
# ... with 8 more variables: NA3 <dbl>, PA4 <dbl>, NA4 <dbl>, PA5 <dbl>, NA5 <dbl>,
#   PA6 <dbl>, NA6 <dbl>, obs <int>

Then I use the following code for restructuring

datasetSPSSSMESM_wide2 <- reshape(datasetSPSSSMESM_2, 
                                  timevar="Obs", idvar="ID", direction="wide")

I would like to get something like this

ID    Time1_1 Time1_2 Time 1_3 Time1_4 Time1_5 ....
1     27154   30150   33266    39842   46744
2     31220   37021   38820    47041   49202   

But when I view the dataset, then I get THIS. the variables itself are all NA, but the data somehow all seems to be stored in the variable names.

# A tibble: 2 x 19
# Groups:   ID [2]
     ID `Day.c(1, 2, 3,~ `Time1.c(1, 2, ~ `Time1_1.c(1, 2~ `Time_between.c~
  <dbl>            <dbl>            <dbl>            <dbl>            <dbl>
1     1               NA               NA               NA               NA
2     2               NA               NA               NA               NA
# ... with 14 more variables: `Time_minutes.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
#   14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
#   35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)` <dbl>, `PA1.c(1, 2,
#   3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
#   26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
#   47, 48, 49, 50)` <dbl>, `NA1.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
#   17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
#   38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)` <dbl>, `PA2.c(1, 2, 3, 4, 5, 6,
#   7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
#   29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
#   50)` <dbl>, `NA2.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
#   20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
#   41, 42, 43, 44, 45, 46, 47, 48, 49, 50)` <dbl>, `PA3.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
#   11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
#   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)` <dbl>,
#   `NA3.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
#   23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
#   44, 45, 46, 47, 48, 49, 50)` <dbl>, `PA4.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
#   14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
#   35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)` <dbl>, `NA4.c(1, 2,
#   3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
#   26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
#   47, 48, 49, 50)` <dbl>, `PA5.c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
#   17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
#   38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)` <dbl>, `NA5.c(1, 

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

I guess if you want to make that data frame wider, usually you would only want choose one variable to include. For example, if you want to analyze "Time1", you can try the following:

datasetSPSSSMESM_wide3 <- tidyr::pivot_wider(data = datasetSPSSSMESM_2, id_cols = "ID", names_from = "Obs", values_from = "Time1")

(I'm more familiar with this pivot_wider function... Maybe stats::reshape can also do this with some other syntax.)

Or, if you really want a super-wide data frame with all other variables, you can use the following:

datasetSPSSSMESM_wide3 <- tidyr::pivot_wider(data = datasetSPSSSMESM_2, id_cols = "ID", names_from = "Obs", values_from = c(-ID, -Obs))

Hope this helps!

Jingmeng


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

2.1m questions

2.1m answers

60 comments

57.0k users

...