@Henry, I have created the data frame below, but you can read from CSV
df = pd.DataFrame({'MAC': {0: 'bc:95:50:0a:82:80',
1: 'bc:95:50:0a:82:80',
2: 'bc:95:50:0a:82:80',
3: 'bc:95:50:0a:82:80',
4: 'bc:95:50:0a:85:60',
5: 'bc:95:50:0a:85:60',
6: 'bc:95:50:0a:85:60',
7: 'bc:95:50:0a:85:60',
8: 'bc:95:50:0a:85:60',
9: 'bc:95:50:9e:58:40',
10: 'bc:95:50:9e:58:40',
11: 'bc:95:50:9e:58:40',
12: 'bc:95:50:9e:58:40',
13: 'bc:95:50:9e:58:40'}})
import datetime
import csv
import numpy as np
dt = datetime.datetime(2020, 11, 30, 7, 5, 0)
step = datetime.timedelta(minutes=5)
df['cumct'] = df.groupby('MAC').cumcount()+1
df['date'] = df['cumct'] * step + dt
df = df.drop(columns='cumct')
df.to_csv('out.csv', index=False)
The out.csv looks like this -
MAC,date
bc:95:50:0a:82:80,2020-11-30 07:10:00
bc:95:50:0a:82:80,2020-11-30 07:15:00
bc:95:50:0a:82:80,2020-11-30 07:20:00
bc:95:50:0a:82:80,2020-11-30 07:25:00
bc:95:50:0a:85:60,2020-11-30 07:10:00
bc:95:50:0a:85:60,2020-11-30 07:15:00
bc:95:50:0a:85:60,2020-11-30 07:20:00
bc:95:50:0a:85:60,2020-11-30 07:25:00
bc:95:50:0a:85:60,2020-11-30 07:30:00
bc:95:50:9e:58:40,2020-11-30 07:10:00
bc:95:50:9e:58:40,2020-11-30 07:15:00
bc:95:50:9e:58:40,2020-11-30 07:20:00
bc:95:50:9e:58:40,2020-11-30 07:25:00
bc:95:50:9e:58:40,2020-11-30 07:30:00
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…