I am trying to write a multivariate Singular Spectrum Analysis with Monte Carlo test. To this extent I am working on a code piece that can reconstruct the input series using the lagged trajectory matrix and projection base (ST-PCs) that result from the pca/ssa decomposition of the input series. The attached code piece works for a lagged univariate (that is, single) time series, but I am struggling to make this reconstruction for a lagged multivariate time series. I don't quite get the procedure mathematically and - not surprisingly - I also did not manage to program it. Useful links are attached to the function descriptions of the accompanying code. Input data should be of the form (time * number of series), so say 288x3 implying 3 time series of 288 time levels.
I hope you can help me out!
import numpy as np
def lagged_covariance_matrix(data, M):
""" Computes the lagged covariance matrix using the Broomhead & King method
Background: Plaut, G., & Vautard, R. (1994). Spells of low-frequency oscillations and
weather regimes in the Northern Hemisphere. Journal of the atmospheric sciences, 51(2), 210-236.
Arguments:
data : pxn time series, where p denotes the length of the time series and n the number of channels
M : window length """
# explicitely 'add' spatial dimension if input is a single time series
if np.ndim(data) == 1:
data = np.reshape(data,(len(data),1))
T = data.shape[0]
L = data.shape[1]
N = T - M + 1
X = np.zeros((T, L, M))
for i in range(M):
X[:,:,i] = np.roll(data, -i, axis = 0)
X = X[:N]
# X constitutes the trajectory matrix and is a stacked hankel matrix
X = np.reshape(X, (N, M*L), order = 'C') # https://www.jstatsoft.org/article/viewFile/v067i02/v67i02.pdf
# choose the smallest projection basis for computation of the covariance matrix
if M*L >= N:
return 1/(M*L) * X.dot(X.T), X
else:
return 1/N * X.T.dot(X), X
def sort_by_eigenvalues(eigenvalues, PCs):
""" Sorts the PCs and eigenvalues by descending size of the eigenvalues """
desc = np.argsort(-eigenvalues)
return eigenvalues[desc], PCs[:,desc]
def Reconstruction(M, E, X):
""" Reconstructs the series as the sum of M subseries.
See: https://en.wikipedia.org/wiki/Singular_spectrum_analysis, 'Basic SSA' &
the work of Vivien Sainte Fare Garnot on univariate time series (https://github.com/VSainteuf/mcssa)
Arguments:
M : window length
E : eigenvector basis
X : trajectory matrix """
time = len(X) + M - 1
RC = np.zeros((time, M))
# step 3: grouping
for i in range(M):
d = np.zeros(M)
d[i] = 1
I = np.diag(d)
Q = np.flipud(X @ E @ I @ E.T)
# step 4: diagonal averaging
for k in range(time):
RC[k, i] = np.diagonal(Q, offset = -(time - M - k)).mean()
return RC
#=====================================================================================================
#=====================================================================================================
#=====================================================================================================
# input data
data = None
# number of lags a.k.a. window length
M = 45 # M = 1 means no lag
covmat, X = lagged_covariance_matrix(data, M)
# get the eigenvalues and vectors of the covariance matrix
vals, vecs = np.linalg.eig(covmat)
eig_data, eigvec_data = sort_by_eigenvalues(vals, vecs)
# component reconstruction
recons_data = Reconstruction(M, eigvec_data, X)
question from:
https://stackoverflow.com/questions/65644051/component-reconstruction-for-multivariate-lagged-time-series 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…