Yes, I remember facing this once or twice - and you are on the right track.
But first things first: if the logic in your "wrapper" is something that
could be put in a method in the base class, then breaking-up the methods
in smaller-tasks, and have a "method slot" system is preferable to this,
as user 2357112 supports monica puts in the comments. If you find out you really need or prefer decorators, the full code is bellow
class A:
def do_things(self):
create_connection() # <- this is the code you'd are putting in the wrapper in the other approach
do_thing_1()
class B(A):
def do_things(self):
# here we have to do thing_1 and thing_2, but
# the connection is created in the superclass method...
# this could be the origin of your question
# Refactor to:
class A:
def do_things(self):
create_connection()
self.internal_do_things()
def internal_do_things(self):
do_thing_1()
class B(A):
def internal_do_things(self):
super().internal_do_things()
do_thing_2()
So, classical inheritance and OO solves this
If you need the decorators anway:
The thing to do is to have the decorator itself, the "wrapper", get
a way to "know" if it already was called in an outer method (i.e. a method
in a subclass which calls super()
), and just act as a transparent
wrapper in this case.
It gets a bit further complicated when we want a robust solution:
a wrapper that can work for different methods in the same class,
and does not get confused if they are called concurrently
(in different threads, or a method calling another method,
not super()
, which should trigger the wrapper).
And in the end, the mechanisms for that are complicated enough that
they should not get in the way of your actual wrapper - so,
ideally they should be built as a decorator themselves, which will
decorate your wrapper.
[hours later]
So, sorry if it does not look "neat" - it turns out implementing what is described above is a bit more complex than I thought initially - we need an intermediate decorator level (called meta_wrapper_applier
in the code), so that the metaclass can re-wrap the methods each time they are redeclared.
I hope the comments in the code and variable names are enough to understand the idea:
from abc import ABCMeta
from functools import wraps
import threading
class WrapperMetaClass(ABCMeta):
def __init__(cls, name, bases, ns, **kw):
super().__init__(name, bases, ns, **kw)
# Get the wrapped methods for all the superclasses
super_wrappers = {}
for supercls in cls.__mro__[::-1]:
super_wrappers.update(supercls.__dict__.get("_wrappers", {}))
# unconditionally install a wrappers dict for each subclass:
sub_wrappers = cls._wrappers = {}
for attrname, attr in ns.items():
if attrname in super_wrappers:
# Applies the wrapper in the baseclass to the subclass method:
setattr(cls, attrname, super_wrappers[attrname]._run_once_wrapper(attr))
elif hasattr(attr, "_run_once_wrapper"):
# Store the wrapper information in the cls for use of the subclasses:
sub_wrappers[attrname] = attr
def run_once_method_decorator(original_wrapper):
re_entering_stacks = {}
# This is the callable used to place a wrapper on the original
# method and on each overriden method.
# All methods with the same name in the subclasses will share the same original wrapper and the
# "re_entering_stacks" data structure.
def meta_wrapper_applier(raw_method):
wrapped_method_in_subclass = None
@wraps(original_wrapper)
def meta_wrapper(*args, **kw):
nonlocal wrapped_method_in_subclass
# uses a plain list to keep track of re-entering the same-named method
# in each thread:
re_entering_stack = re_entering_stacks.setdefault(threading.current_thread(), [])
re_entering = bool(re_entering_stack)
try:
re_entering_stack.append(1)
if re_entering:
result = raw_method(*args, **kw)
else:
if wrapped_method_in_subclass is None:
# Applies the original decorator lazily, and caches the result:
wrapped_method_in_subclass = original_wrapper(raw_method)
result = wrapped_method_in_subclass(*args, **kw)
finally:
re_entering_stack.pop()
return result
# registry = original_wrapper.__dict__.setdefault("_run_once_registry", {})
meta_wrapper._run_once_wrapper = meta_wrapper_applier
return meta_wrapper
return meta_wrapper_applier
# From here on, example code only;
@run_once_method_decorator
def wrapper(f):
@wraps(f)
def _wrap(*args, **kwargs):
print("Entering wrapper")
result = f(*args, **kwargs)
print("Leaving wrapper
")
return result
return _wrap
@run_once_method_decorator
def other_wrapper(f):
@wraps(f)
def _wrap(*args, **kwargs):
print("Entering other wrapper")
result = f(*args, **kwargs)
print("Leaving other wrapper
")
return result
return _wrap
class A(metaclass=WrapperMetaClass):
@wrapper
def f(self):
print("In class A")
def g(self):
print("g in A")
class B(A):
def f(self):
print("In class B")
super().f()
@other_wrapper
def g(self):
print("g in B")
super().g()
class C(B):
def g(self):
print("g in C")
super().g()
if __name__ == '__main__':
a = A()
b = B()
print("Calling A:")
a.f()
a.g()
print("Calling B:")
b.f()
b.g()
print("Calling C:")
C().g()
Output:
Calling A:
Entering wrapper
In class A
Leaving wrapper
g in A
Calling B:
Entering wrapper
In class B
In class A
Leaving wrapper
Entering other wrapper
g in B
g in A
Leaving other wrapper
Calling C:
Entering other wrapper
g in C
g in B
g in A
Leaving other wrapper