So here is a very naive matrix multiplication implementation, where I trid to use a lambda expression to define the kernel, so that I can save the work of passing arguments:
#define cuda_malloc(size) ({ void *_x; cudaMalloc(&_x, size); _x; })
template <typename F> __global__ void exec_kern(F f) { f(); }
void matmul(int *host_a, int *host_b, int *host_c) {
int *__restrict__ a = (int *)cuda_malloc(2048 * 2048 * sizeof(int));
int *__restrict__ b = (int *)cuda_malloc(2048 * 2048 * sizeof(int));
int *__restrict__ c = (int *)cuda_malloc(2048 * 2048 * sizeof(int));
cudaMemcpy(a, host_a, 2048 * 2048 * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(b, host_b, 2048 * 2048 * sizeof(int), cudaMemcpyHostToDevice);
{
auto _kern = [=] __device__ {
int i0 = blockIdx.x;
int i1 = threadIdx.x;
for (int i2 = 0; i2 <= 255; i2 += 1) {
for (int i3 = 0; i3 <= 7; i3 += 1) {
for (int i4 = 0; i4 <= 7; i4 += 1) {
for (int i5 = 0; i5 <= 7; i5 += 1) {
c[((8 * i0) + i3) * 2048 + ((8 * i1) + i4)] =
((a[((8 * i0) + i3) * 2048 + ((8 * i2) + i5)] *
b[((8 * i2) + i5) * 2048 + ((8 * i1) + i4)]) +
c[((8 * i0) + i3) * 2048 + ((8 * i1) + i4)]);
}
}
}
}
};
exec_kern<<<dim3(256, 1, 1), dim3(256, 1, 1)>>>(_kern);
}
cudaMemcpy(host_c, c, 2048 * 2048 * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(a);
cudaFree(b);
cudaFree(c);
}
I annotated the global memory pointers a
, b
and c
with __restrict__
, in hope that the compiler can optimize the generated code with the information.
I tested the code on CUDA 10.2. It takes about 0.7s to run. However, when I turn to the normal ways of kernel definition like this:
__global__ void kern(int *__restrict__ a, int *__restrict__ b, int *__restrict__ c) {
int i0 = blockIdx.x;
int i1 = threadIdx.x;
for (int i2 = 0; i2 <= 255; i2 += 1) {
for (int i3 = 0; i3 <= 7; i3 += 1) {
for (int i4 = 0; i4 <= 7; i4 += 1) {
for (int i5 = 0; i5 <= 7; i5 += 1) {
c[((8 * i0) + i3) * 2048 + ((8 * i1) + i4)] =
((a[((8 * i0) + i3) * 2048 + ((8 * i2) + i5)] *
b[((8 * i2) + i5) * 2048 + ((8 * i1) + i4)]) +
c[((8 * i0) + i3) * 2048 + ((8 * i1) + i4)]);
}
}
}
}
}
...
kern<<<dim3(256, 1, 1), dim3(256, 1, 1)>>>(a, b, c);
it only takes about 0.4s. Further, I tried to manually annotate the lambda-captured pointers as __restrict__
like this:
auto _kern = [=] __device__ {
int *__restrict__ _a = a;
int *__restrict__ _b = b;
int *__restrict__ _c = c;
int i0 = blockIdx.x;
int i1 = threadIdx.x;
for (int i2 = 0; i2 <= 255; i2 += 1) {
for (int i3 = 0; i3 <= 7; i3 += 1) {
for (int i4 = 0; i4 <= 7; i4 += 1) {
for (int i5 = 0; i5 <= 7; i5 += 1) {
_c[((8 * i0) + i3) * 2048 + ((8 * i1) + i4)] =
((_a[((8 * i0) + i3) * 2048 + ((8 * i2) + i5)] *
_b[((8 * i2) + i5) * 2048 + ((8 * i1) + i4)]) +
_c[((8 * i0) + i3) * 2048 + ((8 * i1) + i4)]);
}
}
}
}
};
and it also takes about 0.4s. This should be able to prove my guess: the slowness of the first version is due to the loss of the __restrict__
information of the lambda-captured pointers.
So my question is: is there any way to keep such information, without needing to manually annotate the lambda-captured pointers?
question from:
https://stackoverflow.com/questions/65855081/cuda-lambda-expressions-lose-restrict-information