Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
285 views
in Technique[技术] by (71.8m points)

c# - ASP.NET Identity's default Password Hasher - How does it work and is it secure?

I am wondering wether the Password Hasher that is default implemented in the UserManager that comes with MVC 5 and ASP.NET Identity Framework, is secure enough? And if so, if you could explain to me how it works?

IPasswordHasher interface looks like this:

public interface IPasswordHasher
{
    string HashPassword(string password);
    PasswordVerificationResult VerifyHashedPassword(string hashedPassword, 
                                                       string providedPassword);
}

As you can see, it doesn't take a salt, but it is mentioned in this thread: "Asp.net Identity password hashing" that it does infact salt it behind the scenes. So I am wondering how does it do this? And where does this salt come from?

My concern is that the salt is static, rendering it quite insecure.

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Here is how the default implementation (ASP.NET Framework or ASP.NET Core) works. It uses a Key Derivation Function with random salt to produce the hash. The salt is included as part of the output of the KDF. Thus, each time you "hash" the same password you will get different hashes. To verify the hash the output is split back to the salt and the rest, and the KDF is run again on the password with the specified salt. If the result matches to the rest of the initial output the hash is verified.

Hashing:

public static string HashPassword(string password)
{
    byte[] salt;
    byte[] buffer2;
    if (password == null)
    {
        throw new ArgumentNullException("password");
    }
    using (Rfc2898DeriveBytes bytes = new Rfc2898DeriveBytes(password, 0x10, 0x3e8))
    {
        salt = bytes.Salt;
        buffer2 = bytes.GetBytes(0x20);
    }
    byte[] dst = new byte[0x31];
    Buffer.BlockCopy(salt, 0, dst, 1, 0x10);
    Buffer.BlockCopy(buffer2, 0, dst, 0x11, 0x20);
    return Convert.ToBase64String(dst);
}

Verifying:

public static bool VerifyHashedPassword(string hashedPassword, string password)
{
    byte[] buffer4;
    if (hashedPassword == null)
    {
        return false;
    }
    if (password == null)
    {
        throw new ArgumentNullException("password");
    }
    byte[] src = Convert.FromBase64String(hashedPassword);
    if ((src.Length != 0x31) || (src[0] != 0))
    {
        return false;
    }
    byte[] dst = new byte[0x10];
    Buffer.BlockCopy(src, 1, dst, 0, 0x10);
    byte[] buffer3 = new byte[0x20];
    Buffer.BlockCopy(src, 0x11, buffer3, 0, 0x20);
    using (Rfc2898DeriveBytes bytes = new Rfc2898DeriveBytes(password, dst, 0x3e8))
    {
        buffer4 = bytes.GetBytes(0x20);
    }
    return ByteArraysEqual(buffer3, buffer4);
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...