Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
184 views
in Technique[技术] by (71.8m points)

algorithm - Is log(n!) = Θ(n·log(n))?

I am to show that log(n!) = Θ(n·log(n)).

A hint was given that I should show the upper bound with nn and show the lower bound with (n/2)(n/2). This does not seem all that intuitive to me. Why would that be the case? I can definitely see how to convert nn to n·log(n) (i.e. log both sides of an equation), but that's kind of working backwards.

What would be the correct approach to tackle this problem? Should I draw the recursion tree? There is nothing recursive about this, so that doesn't seem like a likely approach..

Question&Answers:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Remember that

log(n!) = log(1) + log(2) + ... + log(n-1) + log(n)

You can get the upper bound by

log(1) + log(2) + ... + log(n) <= log(n) + log(n) + ... + log(n)
                                = n*log(n)

And you can get the lower bound by doing a similar thing after throwing away the first half of the sum:

log(1) + ... + log(n/2) + ... + log(n) >= log(n/2) + ... + log(n) 
                                       = log(n/2) + log(n/2+1) + ... + log(n-1) + log(n)
                                       >= log(n/2) + ... + log(n/2)
                                        = n/2 * log(n/2) 

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...