A somewhat clumsy ascii-art to demonstrate the mechanism:
The join()
is presumably called by the main-thread. It could also be called by another thread, but would needlessly complicate the diagram.
join
-calling should be placed in the track of the main-thread, but to express thread-relation and keep it as simple as possible, I choose to place it in the child-thread instead.
without join:
+---+---+------------------ main-thread
| |
| +........... child-thread(short)
+.................................. child-thread(long)
with join
+---+---+------------------***********+### main-thread
| | |
| +...........join() | child-thread(short)
+......................join()...... child-thread(long)
with join and daemon thread
+-+--+---+------------------***********+### parent-thread
| | | |
| | +...........join() | child-thread(short)
| +......................join()...... child-thread(long)
+,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, child-thread(long + daemonized)
'-' main-thread/parent-thread/main-program execution
'.' child-thread execution
'#' optional parent-thread execution after join()-blocked parent-thread could
continue
'*' main-thread 'sleeping' in join-method, waiting for child-thread to finish
',' daemonized thread - 'ignores' lifetime of other threads;
terminates when main-programs exits; is normally meant for
join-independent tasks
So the reason you don't see any changes is because your main-thread does nothing after your join
.
You could say join
is (only) relevant for the execution-flow of the main-thread.
If, for example, you want to concurrently download a bunch of pages to concatenate them into a single large page, you may start concurrent downloads using threads, but need to wait until the last page/thread is finished before you start assembling a single page out of many. That's when you use join()
.