From my understanding, you can create a map based on columns from reference_df (I assumed this is not a very big dataframe):
map_key = concat_ws('', PrimaryLookupAttributeName, PrimaryLookupAttributeValue)
map_value = OutputItemNameByValue
and then use this mapping to get the corresponding values in df1:
from itertools import chain
from pyspark.sql.functions import collect_set, array, concat_ws, lit, col, create_map
d = reference_df.agg(collect_set(array(concat_ws('','PrimaryLookupAttributeName','PrimaryLookupAttributeValue'), 'OutputItemNameByValue')).alias('m')).first().m
#[['LeaseStatusx00Abandoned', 'Active'],
# ['LeaseRecoveryTypex00Gross-modified', 'Modified Gross'],
# ['LeaseStatusx00Archive', 'Expired'],
# ['LeaseStatusx00Terminated', 'Terminated'],
# ['LeaseRecoveryTypex00Gross w/base year', 'Modified Gross'],
# ['LeaseStatusx00Draft', 'Pending'],
# ['LeaseRecoveryTypex00Gross', 'Gross']]
mappings = create_map([lit(i) for i in chain.from_iterable(d)])
primaryLookupAttributeName_List = ['LeaseType', 'LeaseRecoveryType', 'LeaseStatus']
df1.select("*", *[ mappings[concat_ws('', lit(c), col(c))].alias("Matched[{}]OutputItemNameByValue".format(c)) for c in primaryLookupAttributeName_List ]).show()
+----------------+...+---------------------------------------+-----------------------------------------------+-----------------------------------------+
|SourceSystemName|...|Matched[LeaseType]OutputItemNameByValue|Matched[LeaseRecoveryType]OutputItemNameByValue|Matched[LeaseStatus]OutputItemNameByValue|
+----------------+...+---------------------------------------+-----------------------------------------------+-----------------------------------------+
| ABC123|...| null| Gross| Terminated|
| ABC123|...| null| Modified Gross| Expired|
| ABC123|...| null| Modified Gross| Pending|
+----------------+...+---------------------------------------+-----------------------------------------------+-----------------------------------------+
UPDATE: to set Column names from the information retrieved through reference_df dataframe:
# a list of domains to retrieve
primaryLookupAttributeName_List = ['LeaseType', 'LeaseRecoveryType', 'LeaseStatus']
# mapping from domain names to column names: using `reference_df`.`TargetAttributeForName`
NEWprimaryLookupAttributeName_List = dict(reference_df.filter(reference_df['DomainName'].isin(primaryLookupAttributeName_List)).agg(collect_set(array('DomainName', 'TargetAttributeForName')).alias('m')).first().m)
test = dataset_standardFalse2.select("*",*[ mappings[concat_ws('', lit(c), col(c))].alias(c_name) for c,c_name in NEWprimaryLookupAttributeName_List.items()])
Note-1: it is better to loop through primaryLookupAttributeName_List so the order of the columns are preserved and in case any entries in primaryLookupAttributeName_List is missing from the dictionary, we can set a default column-name, i.e. Unknown-<col>
. In the old method, columns with the missing entries are simply discarded.
test = dataset_standardFalse2.select("*",*[ mappings[concat_ws('', lit(c), col(c))].alias(NEWprimaryLookupAttributeName_List.get(c,"Unknown-{}".format(c))) for c in primaryLookupAttributeName_List])
Note-2: per comments, to overwrite the existing column names(untested):
(1) use select:
test = dataset_standardFalse2.select([c for c in dataset_standardFalse2.columns if c not in NEWprimaryLookupAttributeName_List.values()] + [ mappings[concat_ws('', lit(c), col(c))].alias(NEWprimaryLookupAttributeName_List.get(c,"Unknown-{}".format(c))) for c in primaryLookupAttributeName_List]).show()
(2) use reduce (not recommended if the List is very long):
from functools import reduce
df_new = reduce(lambda d, c: d.withColumn(c, mappings[concat_ws('', lit(c), col(c))].alias(NEWprimaryLookupAttributeName_List.get(c,"Unknown-{}".format(c)))), primaryLookupAttributeName_List, dataset_standardFalse2)
reference: PySpark create mapping from a dict