Yes, std::begin
and std::end
can work with parameters that are C style arrays.
The trick is in passing a parameter that's a C style array. When you specify a 1D array as a normal parameter to a normal function, its type is silently adjusted from "array of T" to "pointer to T". When you call that function, what gets passed isn't the array (as an array), but a pointer to the first element of the array.
It is, however, possible to pass an array by reference to a function template:
template <class T, size_t N>
void function(T (&array)[N]) {
// function body here
}
In this case, where you're passing an actual array (albeit, by reference) rather than a pointer, you can use std::begin
and std::end
perfectly well. For example:
template <class T, size_t N>
T sum(T (&array)[N]) {
return std::accumulate(std::begin(array), std::end(array), T());
}
Now passing an array is trivial, such as:
int array[] = {1, 2, 3, 4};
auto total = sum(array);
std::begin
and std::end
themselves are implemented similarly to sum
--the array is passed by reference, so they can look something like this:
template <class T, size_t N>
T *begin(T (&array)[N]) {
return array;
}
template <class T, size_t N>
T *end(T (&array)[N]) {
return array + N;
}
Note that although these were added to the standard more recently, they don't require any particularly tricky use of templates, so the implementation above should work fine with a plain old C++98 compiler (and, if memory serves, even with pre-standard compilers such as VC++ 6).