Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
341 views
in Technique[技术] by (71.8m points)

c++ - Why are arguments which do not match the conversion specifier in printf undefined behavior?

In both C (n1570 7.21.6.1/10) and C++ (by inclusion of the C standard library) it is undefined behavior to provide an argument to printf whose type does not match its conversion specification. A simple example:

printf("%d", 1.9)

The format string specifies an int, while the argument is a floating point type.

This question is inspired by the question of a user who encountered legacy code with an abundance of conversion mismatches which apparently did no harm, cf. undefined behaviour in theory and in practice.

Declaring a mere format mismatch UB seems drastic at first. It is clear that the output can be wrong, depending on things like the exact mismatch, argument types, endianness, possibly stack layout and other issues. This extends, as one commentator there pointed out, also to subsequent (or even previous?) arguments. But that is far from general UB. Personally, I never encountered anything else but the expected wrong output.

To venture a guess, I would exclude alignment issues. What I can imagine is that providing a format string which makes printf expect large data together with small actual arguments possibly lets printf read beyond the stack, but I lack deeper insight in the var args mechanism and specific printf implementation details to verify that.

I had a quick look at the printf sources, but they are pretty opaque to the casual reader.

Therefore my question: What are the specific dangers of mis-matching conversion specifiers and arguments in printf which make it UB?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

printf only works as described by the standard if you use it correctly. If you use it incorrectly, the behaviour is undefined. Why should the standard define what happens when you use it wrong?

Concretely, on some architectures floating point arguments are passed in different registers to integer arguments, so inside printf when it tries to find an int matching the format specifier it will find garbage in the corresponding register. Since those details are outside the scope of the standard there is no way to deal with that kind of misbehaviour except to say it's undefined.

For an example of how badly it could go wrong, using a format specifier of "%p" but passing a floating point type could mean that printf tries to read a pointer from a register or stack location which hasn't been set to a valid value and could contain a trap representation, which would cause the program to abort.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...