Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
211 views
in Technique[技术] by (71.8m points)

c++ - Can raw pointers be used instead of iterators with STL algorithms for containers with linear storage?

I have a custom vector container that internally stores item a linear array. Last night, I was trying to implement custom iterators for my class to be able to use them with STL algorithms. I have had some success that you can see in here:

Live example with custom iterators

While doing so, I discovered I can merely pass raw pointers to STL algorithm and they just seem to work fine. Here's the example without any iterators:

#include <cstddef>
#include <iostream>
#include <iterator>
#include <algorithm>

template<typename T>
class my_array{
    T* data_;
    std::size_t size_;

public:

    my_array()
        : data_(NULL), size_(0)
    {}
    my_array(std::size_t size)
        : data_(new T[size]), size_(size)
    {}
    my_array(const my_array<T>& other){
        size_ = other.size_;
        data_ = new T[size_];
        for (std::size_t i = 0; i<size_; i++)
            data_[i] = other.data_[i];
    }
    my_array(const T* first, const T* last){
        size_ = last - first;
        data_ = new T[size_];

        for (std::size_t i = 0; i<size_; i++)
            data_[i] = first[i];
    }

    ~my_array(){
        delete [] data_;
    }
    const my_array<T>& operator=(const my_array<T>& other){
        size_ = other.size_;
        data_ = new T[size_];
        for (std::size_t i = 0; i<size_; i++)
            data_[i] = other.data_[i];
        return other;
    }
    const T& operator[](std::size_t idx) const {return data_[idx];}
    T& operator[](std::size_t& idx) {return data_[idx];}
    std::size_t size(){return size_;}

    T* begin(){return data_;}
    T* end(){return data_+size_;}
};

template<typename T>
void print(T t) {
    std::cout << t << std::endl;
}

int main(){


    typedef float scalar_t;
    scalar_t list [] = {1, 3, 5, 2, 4, 3, 5, 10, 10};
    my_array<scalar_t> a(list, list+sizeof(list)/sizeof(scalar_t));

    // works!
    for (scalar_t* it = a.begin(), *end = a.end();
         it != end; ++it)
        std::cout << ' ' << *it;
    std::cout << std::endl;

    // works!
    std::for_each(a.begin(), a.end(), print<scalar_t>);
    std::cout << std::endl;

    // works!
    my_array<int> b(a.size());
    std::copy(a.begin(), a.end(), b.begin());

    // works!
    scalar_t* end = std::remove(a.begin(), a.end(), 5);
    std::for_each(a.begin(), end, print<scalar_t>);
    std::cout << std::endl;

    // works!
    std::random_shuffle(a.begin(), end);
    std::for_each(a.begin(), end, print<scalar_t>);
    std::cout << std::endl;

    // works!
    std::cout << "Counts of 3 in array = " << std::count(a.begin(), end, 3) << std::endl << std::endl;

    // works!
    std::sort(a.begin(), end);
    std::for_each(a.begin(), end, print<scalar_t>);
    std::cout << std::endl;

    // works!
    if (!std::binary_search(a.begin(), a.end(), 5))
        std::cout << "Removed!" << std::endl;

    return 0;
}

Live example without iterators

My questions here are the following:

  1. Does this always work for containers that have linear storage? I know that this would not work for linked-lists for example.
  2. If they do work in this situation, why should I ever go through the hassle of implementing iterators anyway? I know how iterators generalize my code and whatnot, but if this simple array is all I ever need then I don't see the point.
  3. What are the negative issues of what I'm doing if this approach would always work? For one thing, I can see I'm breaking data encapsulation.
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

One of the features of iterators being based on operator-overloading, is that pointers are already random-access iterators. This was a big design win in the early days of STL, as it made it easier to use algorithms with existing code (as well as making the interface more familiar to programmers). It's perfectly reasonable to wrap an array, add typedef T* iterator; typedef const T* const_iterator, return &array[0] from your begin() and &array[size] from your end(), and then use your container with any iterator-based algorithm. As you already realise, this will work for any container where elements are contiguous in memory (such as an array).

You might implement 'real' iterators if:

  • You have a different-shaped container (such as a tree or list);
  • You want to be able to resize the array without invalidating the iterators;
  • You want to add debugging checks to your iterator use, for example to check if the iterator is used after being invalidated or after the container has been deleted, or to bounds-check;
  • You want to introduce type-safety, and make sure people can't accidentally assign an arbitrary T* to a my_array::iterator.

I'd say this last advantage alone is well worth writing a trivial wrapper class for. If you don't take advantage of C++'s type system by making different kinds of thing have different types, you might as well switch to Javascript :-)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...