I want to compare the predicted values yp
from my neural network in a pairwise fashion, and so I was using (back in my old numpy implementation):
idx = np.repeat(np.arange(len(yp)), len(yp))
jdx = np.tile(np.arange(len(yp)), len(yp))
s = yp[[idx]] - yp[[jdx]]
This basically create a indexing mesh which I then use. idx=[0,0,0,1,1,1,...]
while jdx=[0,1,2,0,1,2...]
. I do not know if there is a simpler manner of doing it...
Anyhow, TensorFlow has a tf.tile()
, but it seems to be lacking a tf.repeat()
.
idx = np.repeat(np.arange(n), n)
v2 = v[idx]
And I get the error:
TypeError: Bad slice index [ 0 0 0 ..., 215 215 215] of type <type 'numpy.ndarray'>
It also does not work to use a TensorFlow constant for the indexing:
idx = tf.constant(np.repeat(np.arange(n), n))
v2 = v[idx]
-
TypeError: Bad slice index Tensor("Const:0", shape=TensorShape([Dimension(46656)]), dtype=int64) of type <class 'tensorflow.python.framework.ops.Tensor'>
The idea is to convert my RankNet implementation to TensorFlow.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…