Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
275 views
in Technique[技术] by (71.8m points)

python - Keras: How to save model and continue training?

I have a model that I've trained for 40 epochs. I kept checkpoints for each epochs, and I have also saved the model with model.save(). The code for training is:

n_units = 1000
model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
# define the checkpoint
filepath="word2vec-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=40, batch_size=50, callbacks=callbacks_list)

However, when I load the model and try training it again, it starts all over as if it hasn't been trained before. The loss doesn't start from the last training.

What confuses me is when I load the model and redefine the model structure and use load_weight, model.predict() works well. Thus, I believe the model weights are loaded:

model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
filename = "word2vec-39-0.0027.hdf5"
model.load_weights(filename)
model.compile(loss='mean_squared_error', optimizer='adam')

However, When I continue training with this, the loss is as high as the initial stage:

filepath="word2vec-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=40, batch_size=50, callbacks=callbacks_list)

I searched and found some examples of saving and loading models here and here. However, none of them work.


Update 1

I looked at this question, tried it and it works:

model.save('partly_trained.h5')
del model
load_model('partly_trained.h5')

But when I close Python and reopen it, then run load_model again, it fails. The loss is as high as the initial state.


Update 2

I tried Yu-Yang's example code and it works. However, when I use my code again, it still failed.

This is result form the original training. The second epoch should start with loss = 3.1***:

13700/13846 [============================>.] - ETA: 0s - loss: 3.0519
13750/13846 [============================>.] - ETA: 0s - loss: 3.0511
13800/13846 [============================>.] - ETA: 0s - loss: 3.0512Epoch 00000: loss improved from inf to 3.05101, saving model to LPT-00-3.0510.h5

13846/13846 [==============================] - 81s - loss: 3.0510    
Epoch 2/60

   50/13846 [..............................] - ETA: 80s - loss: 3.1754
  100/13846 [..............................] - ETA: 78s - loss: 3.1174
  150/13846 [..............................] - ETA: 78s - loss: 3.0745

I closed Python, reopened it, loaded the model with model = load_model("LPT-00-3.0510.h5") then train with:

filepath="LPT-{epoch:02d}-{loss:.4f}.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
# fit the model
model.fit(x, y, epochs=60, batch_size=50, callbacks=callbacks_list)

The loss starts with 4.54:

Epoch 1/60
   50/13846 [..............................] - ETA: 162s - loss: 4.5451
   100/13846 [..............................] - ETA: 113s - loss: 4.3835
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

As it's quite difficult to clarify where the problem is, I created a toy example from your code, and it seems to work alright.

import numpy as np
from numpy.testing import assert_allclose
from keras.models import Sequential, load_model
from keras.layers import LSTM, Dropout, Dense
from keras.callbacks import ModelCheckpoint

vec_size = 100
n_units = 10

x_train = np.random.rand(500, 10, vec_size)
y_train = np.random.rand(500, vec_size)

model = Sequential()
model.add(LSTM(n_units, input_shape=(None, vec_size), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(n_units))
model.add(Dropout(0.2))
model.add(Dense(vec_size, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')

# define the checkpoint
filepath = "model.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]

# fit the model
model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

# load the model
new_model = load_model(filepath)
assert_allclose(model.predict(x_train),
                new_model.predict(x_train),
                1e-5)

# fit the model
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
new_model.fit(x_train, y_train, epochs=5, batch_size=50, callbacks=callbacks_list)

The loss continues to decrease after model loading. (restarting python also gives no problem)

Using TensorFlow backend.
Epoch 1/5
500/500 [==============================] - 2s - loss: 0.3216     Epoch 00000: loss improved from inf to 0.32163, saving model to model.h5
Epoch 2/5
500/500 [==============================] - 0s - loss: 0.2923     Epoch 00001: loss improved from 0.32163 to 0.29234, saving model to model.h5
Epoch 3/5
500/500 [==============================] - 0s - loss: 0.2542     Epoch 00002: loss improved from 0.29234 to 0.25415, saving model to model.h5
Epoch 4/5
500/500 [==============================] - 0s - loss: 0.2086     Epoch 00003: loss improved from 0.25415 to 0.20860, saving model to model.h5
Epoch 5/5
500/500 [==============================] - 0s - loss: 0.1725     Epoch 00004: loss improved from 0.20860 to 0.17249, saving model to model.h5

Epoch 1/5
500/500 [==============================] - 0s - loss: 0.1454     Epoch 00000: loss improved from inf to 0.14543, saving model to model.h5
Epoch 2/5
500/500 [==============================] - 0s - loss: 0.1289     Epoch 00001: loss improved from 0.14543 to 0.12892, saving model to model.h5
Epoch 3/5
500/500 [==============================] - 0s - loss: 0.1169     Epoch 00002: loss improved from 0.12892 to 0.11694, saving model to model.h5
Epoch 4/5
500/500 [==============================] - 0s - loss: 0.1097     Epoch 00003: loss improved from 0.11694 to 0.10971, saving model to model.h5
Epoch 5/5
500/500 [==============================] - 0s - loss: 0.1057     Epoch 00004: loss improved from 0.10971 to 0.10570, saving model to model.h5

BTW, redefining the model followed by load_weight() definitely won't work, because save_weight() and load_weight() does not save/load the optimizer.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...