Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
641 views
in Technique[技术] by (71.8m points)

algorithm - Distance from a point to a polygon

I am trying to determine the distance from a point to a polygon in 2D space. The point can be inside or outside the polygon; The polygon can be convex or concave.

If the point is within the polygon or outside the polygon with a distance smaller than a user-defined constant d, the procedure should return True; False otherwise.

I have found a similar question: Distance from a point to a polyhedron or to a polygon. However, the space is 2D in my case and the polygon can be concave, so it's somehow different from that one.

I suppose there should be a method simpler than offsetting the polygon by d and determining it's inside or outside the polygon.

Any algorithm, code, or hints for me to google around would be appreciated.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Your best bet is to iterate over all the lines and find the minimum distance from a point to a line segment.

To find the distance from a point to a line segment, you first find the distance from a point to a line by picking arbitrary points P1 and P2 on the line (it might be wise to use your endpoints). Then take the vector from P1 to your point P0 and find (P2-P1) . (P0 - P1) where . is the dot product. Divide this value by ||P2-P1||^2 and get a value r.

Now if you picked P1 and P2 as your points, you can simply check if r is between 0 and 1. If r is greater than 1, then P2 is the closest point, so your distance is ||P0-P2||. If r is less than 0, then P1 is the closest point, so your distance is ||P0-P1||.

If 0<r<1, then your distance is sqrt(||P0-P1||^2 - (r * ||P2-P1||)^2)

The pseudocode is as follows:

for p1, p2 in vertices:

  var r = dotProduct(vector(p2 - p1), vector(x - p1))
  //x is the point you're looking for

  r /= (magnitude(vector(p2 - p1)) ** 2)

  if r < 0:
    var dist = magnitude(vector(x - p1))
  else if r > 1:
    dist = magnitude(vector(p2 - x))
  else:
    dist = sqrt(magnitude(vector(x - p1)) ^ 2 - (r * magnitude(vector(p2-p1))) ^ 2)

  minDist = min(dist,minDist)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...