In C99, it's technically undefined behavior. C99 §6.5.6 says:
7) For the purposes of these operators, a pointer to an object that is not an element of an
array behaves the same as a pointer to the first element of an array of length one with the
type of the object as its element type.
[...]
9) When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. [...]
And §6.3.2.3/3 says:
An integer constant expression with the value 0, or such an expression cast to type
void *
, is called a null pointer constant.55) If a null pointer constant is converted to a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.
So since a null pointer is unequal to any object, it violates the preconditions of 6.5.6/9, so it's undefined behavior. But in practicality, I'd be willing to bet that pretty much every compiler will return a result of 0 without any ill side effects.
In C89, it's also undefined behavior, though the wording of the standard is slightly different.
C++03, on the other hand, does have defined behavior in this instance. The standard makes a special exception for subtracting two null pointers. C++03 §5.7/7 says:
If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original pointer value. If two pointers point to the same object or both point one past the end of the same array or both are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the type ptrdiff_t
.
C++11 (as well as the latest draft of C++14, n3690) have identical wording to C++03, with just the minor change of std::ptrdiff_t
in place of ptrdiff_t
.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…