These are talking about two slightly different things.
The 7.2251 digits is the precision with which a number can be stored internally. For one example, if you did a computation with a double precision number (so you were starting with something like 15 digits of precision), then rounded it to a single precision number, the precision you'd have left at that point would be approximately 7 digits.
The 6 digits is talking about the precision that can be maintained through a round-trip conversion from a string of decimal digits, into a floating point number, then back to another string of decimal digits.
So, let's assume I start with a number like 1.23456789
as a string, then convert that to a float32, then convert the result back to a string. When I've done this, I can expect 6 digits to match exactly. The seventh digit might be rounded though, so I can't necessarily expect it to match (though it probably will be +/- 1 of the original string.
For example, consider the following code:
#include <iostream>
#include <iomanip>
int main() {
double init = 987.23456789;
for (int i = 0; i < 100; i++) {
float f = init + i / 100.0;
std::cout << std::setprecision(10) << std::setw(20) << f;
}
}
This produces a table like the following:
987.2345581 987.2445679 987.2545776 987.2645874
987.2745972 987.2845459 987.2945557 987.3045654
987.3145752 987.324585 987.3345947 987.3445435
987.3545532 987.364563 987.3745728 987.3845825
987.3945923 987.404541 987.4145508 987.4245605
987.4345703 987.4445801 987.4545898 987.4645386
987.4745483 987.4845581 987.4945679 987.5045776
987.5145874 987.5245972 987.5345459 987.5445557
987.5545654 987.5645752 987.574585 987.5845947
987.5945435 987.6045532 987.614563 987.6245728
987.6345825 987.6445923 987.654541 987.6645508
987.6745605 987.6845703 987.6945801 987.7045898
987.7145386 987.7245483 987.7345581 987.7445679
987.7545776 987.7645874 987.7745972 987.7845459
987.7945557 987.8045654 987.8145752 987.824585
987.8345947 987.8445435 987.8545532 987.864563
987.8745728 987.8845825 987.8945923 987.904541
987.9145508 987.9245605 987.9345703 987.9445801
987.9545898 987.9645386 987.9745483 987.9845581
987.9945679 988.0045776 988.0145874 988.0245972
988.0345459 988.0445557 988.0545654 988.0645752
988.074585 988.0845947 988.0945435 988.1045532
988.114563 988.1245728 988.1345825 988.1445923
988.154541 988.1645508 988.1745605 988.1845703
988.1945801 988.2045898 988.2145386 988.2245483
If we look through this, we can see that the first six significant digits always follow the pattern precisely (i.e., each result is exactly 0.01 greater than its predecessor). As we can see in the original double
, the value is actually 98x.xx456--but when we convert the single-precision float to decimal, we can see that the 7th digit frequently would not be read back in correctly--since the subsequent digit is greater than 5, it should round up to 98x.xx46, but some of the values won't (e.g,. the second to last item in the first column is 988.154541
, which would be round down instead of up, so we'd end up with 98x.xx45 instead of 46
. So, even though the value (as stored) is precise to 7 digits (plus a little), by the time we round-trip the value through a conversion to decimal and back, we can't depend on that seventh digit matching precisely any more (even though there's enough precision that it will a lot more often than not).
1. That basically means 7 digits, and the 8th digit will be a little more accurate than nothing, but not a whole lot--for example, if we were converting from a double of 1.2345678
, the .225
digits of precision mean that the last digit would be with about +/- .775 of the what started out there (whereas without the .225
digits of precision, it would be basically +/- 1 of what started out there).