The partitioned example code from Spark / Scala: forward fill with last observation in pyspark is shown. This only works for data that can be partitioned.
Load the data
values = [
(1, "2015-12-01", None),
(1, "2015-12-02", "U1"),
(1, "2015-12-02", "U1"),
(1, "2015-12-03", "U2"),
(1, "2015-12-04", None),
(1, "2015-12-05", None),
(2, "2015-12-04", None),
(2, "2015-12-03", None),
(2, "2015-12-02", "U3"),
(2, "2015-12-05", None),
]
rdd = sc.parallelize(values)
df = rdd.toDF(["cookie_id", "c_date", "user_id"])
df = df.withColumn("c_date", df.c_date.cast("date"))
df.show()
The DataFrame is
+---------+----------+-------+
|cookie_id| c_date|user_id|
+---------+----------+-------+
| 1|2015-12-01| null|
| 1|2015-12-02| U1|
| 1|2015-12-02| U1|
| 1|2015-12-03| U2|
| 1|2015-12-04| null|
| 1|2015-12-05| null|
| 2|2015-12-04| null|
| 2|2015-12-03| null|
| 2|2015-12-02| U3|
| 2|2015-12-05| null|
+---------+----------+-------+
Column used to sort the partitions
# get the sort key
def getKey(item):
return item.c_date
The fill function. Can be used to fill in multiple columns if necessary.
# fill function
def fill(x):
out = []
last_val = None
for v in x:
if v["user_id"] is None:
data = [v["cookie_id"], v["c_date"], last_val]
else:
data = [v["cookie_id"], v["c_date"], v["user_id"]]
last_val = v["user_id"]
out.append(data)
return out
Convert to rdd, partition, sort and fill the missing values
# Partition the data
rdd = df.rdd.groupBy(lambda x: x.cookie_id).mapValues(list)
# Sort the data by date
rdd = rdd.mapValues(lambda x: sorted(x, key=getKey))
# fill missing value and flatten
rdd = rdd.mapValues(fill).flatMapValues(lambda x: x)
# discard the key
rdd = rdd.map(lambda v: v[1])
Convert back to DataFrame
df_out = sqlContext.createDataFrame(rdd)
df_out.show()
The output is
+---+----------+----+
| _1| _2| _3|
+---+----------+----+
| 1|2015-12-01|null|
| 1|2015-12-02| U1|
| 1|2015-12-02| U1|
| 1|2015-12-03| U2|
| 1|2015-12-04| U2|
| 1|2015-12-05| U2|
| 2|2015-12-02| U3|
| 2|2015-12-03| U3|
| 2|2015-12-04| U3|
| 2|2015-12-05| U3|
+---+----------+----+