Is it possible to modify A* to return the shortest path with the least number of turns?
One complication: Nodes can no longer be distinguished solely by their location, because their parent node is relevant in determining future turns, so they have to have a direction associated with them as well.
But the main problem I'm having, is how to work number of turns into the partial path cost (g). If I multiply g by the number of turns taken (t), weird things are happening like: A longer path with N turns near the end is favored over a shorter path with N turns near the beginning.
Another less optimal solution I'm considering is: After calculating the shortest path, I could run a second A* iteration (with a different path cost formula), this time bounded within the x/y range of the shortest path, and return the path with the least turns. Any other ideas?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…