Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
133 views
in Technique[技术] by (71.8m points)

c++ - Combining two lists by key using Thrust

Given two key-value lists, I am trying to combine the two sides by matching the keys and applying a function to the two values when the keys match. In my case I want to multiply the values. A small example to make it more clear:

Left keys:   { 1, 2, 4, 5, 6 }
Left values: { 3, 4, 1, 2, 1 }

Right keys:   { 1, 3, 4, 5, 6, 7 };
Right values: { 2, 1, 1, 4, 1, 2 };

Expected output keys:   { 1, 4, 5, 6 }
Expected output values: { 6, 1, 8, 1 }

I have been able to implement this on the CPU using C++ using the next code:

int main() {
    int leftKeys[5] =   { 1, 2, 4, 5, 6 };
    int leftValues[5] = { 3, 4, 1, 2, 1 };
    int rightKeys[6] =   { 1, 3, 4, 5, 6, 7 };
    int rightValues[6] = { 2, 1, 1, 4, 1, 2 };

    int leftIndex = 0, rightIndex = 0;
    std::vector<std::tuple<int, int>> result;
    while (leftIndex < 5 && rightIndex < 6) {
        if (leftKeys[leftIndex] < rightKeys[rightIndex]) {
            leftIndex++;
        }
        if (leftKeys[leftIndex] > rightKeys[rightIndex]) {
            rightIndex++;
        }
        result.push_back(std::make_tuple(leftKeys[leftIndex], leftValues[leftIndex] * rightValues[rightIndex]));
        leftIndex++;
        rightIndex++;
    }

    // Print results
    for (int i = 0; i < result.size(); i++) {
        std::cout << "Key: " << std::get<0>(result[i]) << "; Value: " << std::get<1>(result[i]) << "
";
    }
}

However, I have the input keys and values in Thrust's device_vectors and I need the results on the GPU as well. Therefore it would be more efficient if I did not need to copy all inputs to the host and all outputs back to the device.

The problem is that I cannot find a Thrust function that can be used to combine two lists using a set of keys (and apply a function to both values). Does such a function exist or is there an easy way to implement it myself of should I just do this on the host?

Update:

The following assumptions can be made about the input:

  • The keys are always sorted.
  • No duplicate keys exist within a single list (between the lists, duplicate keys of course do exist, otherwise the result would be empty).

Update 2:

While implementing the second approach in @Robert's answer I get stuck at the transformation. My code so far is below:

struct multiply_transformation : public thrust::binary_function<std::tuple<int, int>, std::tuple<int, int>, std::tuple<int, int>>
{
    __host__ __device__
        thrust::tuple<int, int> operator()(thrust::tuple<int, int> d_left, thrust::tuple<int, int> d_right)
    {
        if (thrust::get<0>(d_left) == thrust::get<0>(d_right)) {
            return thrust::make_tuple(thrust::get<0>(d_left), thrust::get<1>(d_left) * thrust::get<1>(d_right));
        }
        return thrust::make_tuple(-1, -1);
    }
};


thrust::device_vector<int> d_mergedKeys(h_leftCount + h_rightCount);
thrust::device_vector<int> d_mergedValues(h_leftCount + h_rightCount);
thrust::merge_by_key(d_leftCountKeys.begin(), d_leftCountKeys.begin() + h_leftCount,
    d_rightCountKeys.begin(), d_rightCountKeys.begin() + h_rightCount,
    d_leftCounts.begin(), d_rightCounts.begin(), d_mergedKeys.begin(), d_mergedValues.begin());

typedef thrust::tuple<int, int> IntTuple;
thrust::zip_iterator<IntTuple> d_zippedCounts(thrust::make_tuple(d_mergedKeys.begin(), d_mergedValues.begin()));
thrust::zip_iterator<IntTuple> d_zippedCountsOffset(d_zippedCounts + 1);

multiply_transformation transformOperator;
thrust::device_vector<IntTuple> d_transformedResult(h_leftCount + h_rightCount);
thrust::transform(d_zippedCounts, d_zippedCounts + h_leftCount + h_rightCount - 1, d_zippedCountsOffset, d_transformedResult.begin(), transformOperator);

However, I get the error that no overloaded function thrust::transform matches the argument list. In the above code h_leftCount and h_rightCount are the sizes of the left and right inputs. d_leftCountKeys, d_rightCountKeys, d_leftCounts, and d_rightCounts are thrust::device_vector<int>.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Well, I'm not sure this is the best method (@m.s. usually comes up with better approaches than I), but one possible approach would be (method 1):

  1. set_intersection_by_key(Left,Right)
  2. set_intersection_by_key(Right,Left)
  3. Take the values outputs from step 1 and step 2, and perform a transform on them to multiply the values results together (or whatever other mathematical operation you'd like to perform on the corresponding values results from step 1 and step 2).

I don't know what your skill level is with thrust but I can provide a trivial worked example of the above if desired.

Another possible approach (method 2):

  1. merge_by_key the two lists together
  2. Perform a transform using two versions of the resultant list from step 1: The first consisting of [first, last-1) and the second consisting of [first+1, last). This will require a special functor that takes a zipped version of the keys and values, and compares the two keys presented. If it is a match, output the desired mathematical operation on the two presented values; if it is not a match, output some kind of marker or known illegal value. (If such an illegal value is impossible to construct, we can zip a 3rd marker array in if needed.)
  3. Do a remove_if on the output of step 2, to compact the result down to the desired result, removing all value entries that are illegal, or else removing all value entries that are indicated by the marker array.

My sense is the second method might be faster, but I haven't carefully thought through it. In any event, it's better to benchmark test cases than to work off of (my) intuition.

Based on a comment below, here is a description of what is happening starting with the 2nd step of method 2, using your example dataset:

The output of step 1 (the merge_by_key operation) would look like something like this:

keys:   { 1, 1, 2, 3, 4, 4, 5, 5, 6, 6, 7 };
values: { 3, 2, 4, 1, 1, 1, 2, 4, 1, 1, 2 };

Let's construct two versions, the first being "the item" and the second being "the next item to the right":

keys1:   { 1, 1, 2, 3, 4, 4, 5, 5, 6, 6 };
values1: { 3, 2, 4, 1, 1, 1, 2, 4, 1, 1 };

keys2:   { 1, 2, 3, 4, 4, 5, 5, 6, 6, 7 };
values2: { 2, 4, 1, 1, 1, 2, 4, 1, 1, 2 };

The actual "construction" is trivial. keys1 is just [keys.begin(), keys.end()-1), and keys2 is just [keys.begin()+1, keys.end()). And likewise for values1 and values2.

We'll zip keys1 and values1 together and we'll zip keys2 and values2 together. Then we'll pass these two zipped entities to a transform operation that has a special functor that will do the following:

If keys1 == keys2, do the desired math operation on the values1 and values2 quantities, and place a one in the marker array. If not, place a 0 in a marker array. The output of this operation would be:

 keys:   { 1, 2, 3, 4, 4, 5, 5, 6, 6, 7 };
 values: { 6, 4, 1, 1, 1, 8, 4, 1, 1, 2 };
 marker: { 1, 0, 0, 1, 0, 1, 0, 1, 0, 0 };

Now zip the 3 vectors above together, and pass that to remove_if. The remove_if functor would indicate removal of any items for which marker == 0, leaving:

 keys:   { 1, 4, 5, 6 };
 values: { 6, 1, 8, 1 };
 marker: { 1, 1, 1, 1 };

Here is a fully worked example demonstrating both methods:

$ cat t1007.cu
#include <iostream>
#include <thrust/device_vector.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/set_operations.h>
#include <thrust/transform.h>
#include <thrust/functional.h>
#include <thrust/copy.h>
#include <thrust/merge.h>
#include <thrust/remove.h>
#include <assert.h>

struct mark_mpy_func
{
  template <typename T1, typename T2>
  __host__ __device__
  int operator()(T1 &z1, T2 &z2){
    int res = 0;
    if (thrust::get<0>(z1) == thrust::get<0>(z2)){
      res = thrust::get<1>(z1) * thrust::get<1>(z2);
      thrust::get<2>(z1) = 1;}
    return res;
    }
};

struct mtest_func
{
  __host__ __device__
  bool operator()(int t){
    if (t == 0) return true;
    return false;
    }
};

int main(){

  int Lkeys[] =   { 1, 2, 4, 5, 6 };
  int Lvals[] =   { 3, 4, 1, 2, 1 };
  int Rkeys[] =   { 1, 3, 4, 5, 6, 7 };
  int Rvals[] =   { 2, 1, 1, 4, 1, 2 };

  size_t Lsize = sizeof(Lkeys)/sizeof(int);
  size_t Rsize = sizeof(Rkeys)/sizeof(int);

  thrust::device_vector<int> Lkeysv(Lkeys, Lkeys+Lsize);
  thrust::device_vector<int> Lvalsv(Lvals, Lvals+Lsize);
  thrust::device_vector<int> Rkeysv(Rkeys, Rkeys+Rsize);
  thrust::device_vector<int> Rvalsv(Rvals, Rvals+Rsize);

  // method 1

  thrust::device_vector<int> Lkeysvo(Lsize);
  thrust::device_vector<int> Lvalsvo(Lsize);
  thrust::device_vector<int> Rkeysvo(Rsize);
  thrust::device_vector<int> Rvalsvo(Rsize);

  size_t Lsizeo = thrust::set_intersection_by_key(Lkeysv.begin(), Lkeysv.end(), Rkeysv.begin(), Rkeysv.end(), Lvalsv.begin(), Lkeysvo.begin(), Lvalsvo.begin()).first - Lkeysvo.begin();
  size_t Rsizeo = thrust::set_intersection_by_key(Rkeysv.begin(), Rkeysv.end(), Lkeysv.begin(), Lkeysv.end(), Rvalsv.begin(), Rkeysvo.begin(), Rvalsvo.begin()).first - Rkeysvo.begin();

  assert(Lsizeo == Rsizeo);
  thrust::device_vector<int> res1(Lsizeo);
  thrust::transform(Lvalsvo.begin(), Lvalsvo.begin()+Lsizeo, Rvalsvo.begin(), res1.begin(), thrust::multiplies<int>());

  std::cout << "Method 1 result:" << std::endl << "keys: ";
  thrust::copy_n(Lkeysvo.begin(), Lsizeo, std::ostream_iterator<int>(std::cout, ","));
  std::cout << std::endl << "vals: ";
  thrust::copy_n(res1.begin(), Lsizeo, std::ostream_iterator<int>(std::cout, ","));
  std::cout << std::endl;

  // method 2

  thrust::device_vector<int> Mkeysv(Lsize + Rsize);
  thrust::device_vector<int> Mvalsv(Lsize + Rsize);

  thrust::merge_by_key(Lkeysv.begin(), Lkeysv.end(), Rkeysv.begin(), Rkeysv.end(), Lvalsv.begin(), Rvalsv.begin(), Mkeysv.begin(), Mvalsv.begin());
  thrust::device_vector<int> marker(Lsize + Rsize - 1);
  thrust::device_vector<int> res2(Lsize + Rsize - 1);
  thrust::transform(thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.begin(), Mvalsv.begin(), marker.begin())), thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.end()-1, Mvalsv.end()-1, marker.end())), thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.begin()+1, Mvalsv.begin()+1)), res2.begin(), mark_mpy_func());
  size_t rsize2 = thrust::remove_if(thrust::make_zip_iterator(thrust::make_tuple( Mkeysv.begin(), res2.begin())), thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.end()-1, res2.end())), marker.begin(), mtest_func()) - thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.begin(), res2.begin()));
  std::cout << "Method 2 result:" << std::endl << "keys: ";
  thrust::copy_n(Mkeysv.begin(), rsize2, std::ostream_iterator<int>(std::cout, ","));
  std::cout << std::endl << "vals: ";
  thrust::copy_n(res2.begin(), rsize2, std::ostream_iterator<int>(std::cout, ","));
  std::cout << std::endl;


  return 0;
}

$ nvcc -o t1007 t1007.cu
$ ./t1007
Method 1 result:
keys: 1,4,5,6,
vals: 6,1,8,1,
Method 2 result:
keys: 1,4,5,6,
vals: 6,1,8,1,
$

If it is acceptable to use a marker value (say, -1) in the output data to inform the remove_if operation, then the separate marker array can be dispensed with. Here's a modified version of method 2 that works this way:

$ cat t1007.cu
#include <iostream>
#include <thrust/device_vector.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/transform.h>
#include <thrust/copy.h>
#include <thrust/merge.h>
#include <thrust/remove.h>

#define MARK_VAL -1

struct mark_mpy_func
{
  template <typename T1, typename T2>
  __host__ __device__
  int operator()(T1 &z1, T2 &z2){
    int res = MARK_VAL;
    if (thrust::get<0>(z1) == thrust::get<0>(z2)){
      res = thrust::get<1>(z1) * thrust::get<1>(z2);}
    return res;
    }
};

struct mtest_func
{
  template <typename T>
  __host__ __device__
  bool operator()(T t){
    if (thrust::get<1>(t) == MARK_VAL) return true;
    return false;
    }
};

int main(){

  int Lkeys[] =   { 1, 2, 4, 5, 6 };
  int Lvals[] =   { 3, 4, 1, 2, 1 };
  int Rkeys[] =   { 1, 3, 4, 5, 6, 7 };
  int Rvals[] =   { 2, 1, 1, 4, 1, 2 };

  size_t Lsize = sizeof(Lkeys)/sizeof(int);
  size_t Rsize = sizeof(Rkeys)/sizeof(int);

  thrust::device_vector<int> Lkeysv(Lkeys, Lkeys+Lsize);
  thrust::device_vector<int> Lvalsv(Lvals, Lvals+Lsize);
  thrust::device_vector<int> Rkeysv(Rkeys, Rkeys+Rsize);
  thrust::device_vector<int> Rvalsv(Rvals, Rvals+Rsize);

  // method 2

  thrust::device_vector<int> Mkeysv(Lsize + Rsize);
  thrust::device_vector<int> Mvalsv(Lsize + Rsize);

  thrust::merge_by_key(Lkeysv.begin(), Lkeysv.end(), Rkeysv.begin(), Rkeysv.end(), Lvalsv.begin(), Rvalsv.begin(), Mkeysv.begin(), Mvalsv.begin());
  thrust::device_vector<int> res2(Lsize + Rsize - 1);
  thrust::transform(thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.begin(), Mvalsv.begin())), thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.end()-1, Mvalsv.end()-1)), thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.begin()+1, Mvalsv.begin()+1)), res2.begin(), mark_mpy_func());
  size_t rsize2 = thrust::remove_if(thrust::make_zip_iterator(thrust::make_tuple( Mkeysv.begin(), res2.begin())), thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.end()-1, res2.end())), mtest_func()) - thrust::make_zip_iterator(thrust::make_tuple(Mkeysv.begin(), res2.begin()));
  std::cout << "Method 2 result:" << std::endl << "keys: ";
  thrust::copy_n(Mkeysv.begin(), rsize2, std::ostream_iterator<int>(std::cout, ","));
  std::cout << std::endl << "vals: ";
  thrust::copy_n(res2.begin(), rsize2, std::ostream_iterator<int>(std::cout, ","));
  std::cout << std::endl;


  return 0;
}

$ nvcc -o t1007 t1007.cu
$ ./t1007
Method 2 result:
keys: 1,4,5,6,
vals: 6,1,8,1,
$

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...