Given a vector of bits v
, compute the collection of bits that have Hamming distance 1 with v
, then with distance 2, up to an input parameter t
.
So for
011 I should get
~~~
111
001
010
~~~ -> 3 choose 1 in number
101
000
110
~~~ -> 3 choose 2
100
~~~ -> 3 choose 3
How to efficiently compute this? The vector won't be always of dimension 3, e.g. it could be 6. This will run numerous time in my real code, so some efficiency would be welcome as well (even by paying more memory).
My attempt:
#include <iostream>
#include <vector>
void print(const std::vector<char>& v, const int idx, const char new_bit)
{
for(size_t i = 0; i < v.size(); ++i)
if(i != idx)
std::cout << (int)v[i] << " ";
else
std::cout << (int)new_bit << " ";
std::cout << std::endl;
}
void find_near_hamming_dist(const std::vector<char>& v, const int t)
{
// if t == 1
for(size_t i = 0; i < v.size(); ++i)
{
print(v, i, v[i] ^ 1);
}
// I would like to produce t == 2
// only after ALL the t == 1 results are reported
/* how to? */
}
int main()
{
std::vector<char> v = {0, 1, 1};
find_near_hamming_dist(v, 1);
return 0;
}
Output:
MacBook-Pro:hammingDist gsamaras$ g++ -Wall -std=c++0x hammingDist.cpp -o ham
MacBook-Pro:hammingDist gsamaras$ ./ham
1 1 1
0 0 1
0 1 0
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…