The dup system call duplicates an existing file descriptor, returning a new one that
refers to the same underlying I/O object.
Dup allows shells to implement commands like this:
ls existing-file non-existing-file > tmp1 2>&1
The 2>&1 tells the shell to give the command a file descriptor 2 that is a duplicate of descriptor 1. (i.e stderr & stdout point to same fd).
Now the error message for calling ls on non-existing file and the correct output of ls on existing file show up in tmp1 file.
The following example code runs the program wc with standard input connected
to the read end of a pipe.
int p[2];
char *argv[2];
argv[0] = "wc";
argv[1] = 0;
pipe(p);
if(fork() == 0) {
close(STDIN); //CHILD CLOSING stdin
dup(p[STDIN]); // copies the fd of read end of pipe into its fd i.e 0 (STDIN)
close(p[STDIN]);
close(p[STDOUT]);
exec("/bin/wc", argv);
} else {
write(p[STDOUT], "hello world
", 12);
close(p[STDIN]);
close(p[STDOUT]);
}
The child dups the read end onto file descriptor 0, closes the file de
scriptors in p, and execs wc. When wc reads from its standard input, it reads from the
pipe.
This is how pipes are implemented using dup, well that one use of dup now you use pipe to build something else, that's the beauty of system calls,you build one thing after another using tools which are already there , these tool were inturn built using something else so on ..
At the end system calls are the most basic tools you get in kernel
Cheers :)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…