Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
341 views
in Technique[技术] by (71.8m points)

c++ - Linear index upper triangular matrix

If I have the upper triangular portion of a matrix, offset above the diagonal, stored as a linear array, how can the (i,j) indices of a matrix element be extracted from the linear index of the array?

For example, the linear array [a0, a1, a2, a3, a4, a5, a6, a7, a8, a9 is storage for the matrix

0  a0  a1  a2  a3
0   0  a4  a5  a6
0   0   0  a7  a8
0   0   0   0  a9
0   0   0   0   0

And we want to know the (i,j) index in the array corresponding to an offset in the linear matrix, without recursion.

A suitable result, k2ij(int k, int n) -> (int, int) would satisfy, for example

k2ij(k=0, n=5) = (0, 1)
k2ij(k=1, n=5) = (0, 2)
k2ij(k=2, n=5) = (0, 3)
k2ij(k=3, n=5) = (0, 4)
k2ij(k=4, n=5) = (1, 2)
k2ij(k=5, n=5) = (1, 3)
 [etc]
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

The equations going from linear index to (i,j) index are

i = n - 2 - floor(sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)
j = k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2

The inverse operation, from (i,j) index to linear index is

k = (n*(n-1)/2) - (n-i)*((n-i)-1)/2 + j - i - 1

Verify in Python with:

from numpy import triu_indices, sqrt
n = 10
for k in range(n*(n-1)/2):
    i = n - 2 - int(sqrt(-8*k + 4*n*(n-1)-7)/2.0 - 0.5)
    j = k + i + 1 - n*(n-1)/2 + (n-i)*((n-i)-1)/2
    assert np.triu_indices(n, k=1)[0][k] == i
    assert np.triu_indices(n, k=1)[1][k] == j

for i in range(n):
    for j in range(i+1, n):
        k = (n*(n-1)/2) - (n-i)*((n-i)-1)/2 + j - i - 1
        assert triu_indices(n, k=1)[0][k] == i
        assert triu_indices(n, k=1)[1][k] == j

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...