Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
359 views
in Technique[技术] by (71.8m points)

r - What algorithm I need to find n-grams?

What algorithm is used for finding ngrams?

Supposing my input data is an array of words and the size of the ngrams I want to find, what algorithm I should use?

I'm asking for code, with preference for R. The data is stored in database, so can be a plgpsql function too. Java is a language I know better, so I can "translate" it to another language.

I'm not lazy, I'm only asking for code because I don't want to reinvent the wheel trying to do an algorithm that is already done.

Edit: it's important know how many times each n-gram appears.

Edit 2: there is a R package for N-GRAMS?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

If you want to use R to identify ngrams, you can use the tm package and the RWeka package. It will tell you how many times the ngram occurs in your documents, like so:

  library("RWeka")
  library("tm")

  data("crude")

  BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))
  tdm <- TermDocumentMatrix(crude, control = list(tokenize = BigramTokenizer))

  inspect(tdm[340:345,1:10])

A term-document matrix (6 terms, 10 documents)

Non-/sparse entries: 4/56
Sparsity           : 93%
Maximal term length: 13 
Weighting          : term frequency (tf)

               Docs
Terms           127 144 191 194 211 236 237 242 246 248
  and said        0   0   0   0   0   0   0   0   0   0
  and security    0   0   0   0   0   0   0   0   1   0
  and set         0   1   0   0   0   0   0   0   0   0
  and six-month   0   0   0   0   0   0   0   1   0   0
  and some        0   0   0   0   0   0   0   0   0   0
  and stabilise   0   0   0   0   0   0   0   0   0   1

hat-tip: http://tm.r-forge.r-project.org/faq.html


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...